Regulation of Coronaviral Poly(A) Tail Length during Infection

نویسندگان

  • Hung-Yi Wu
  • Ting-Yung Ke
  • Wei-Yu Liao
  • Nai-Yun Chang
چکیده

The positive-strand coronavirus genome of ~30 kilobase in length and subgenomic (sg) mRNAs of shorter lengths, are 5' and 3'-co-terminal by virtue of a common 5'-capped leader and a common 3'-polyadenylated untranslated region. Here, by ligating head-to-tail viral RNAs from bovine coronavirus-infected cells and sequencing across the ligated junctions, it was learned that at the time of peak viral RNA synthesis [6 hours postinfection (hpi)] the 3' poly(A) tail on genomic and sgmRNAs is ~65 nucleotides (nt) in length. Surprisingly, this length was found to vary throughout infection from ~45 nt immediately after virus entry (at 0 to 4 hpi) to ~65 nt later on (at 6 h to 9 hpi) and from ~65 nt (at 6 h to 9 hpi) to ~30 nt (at 120-144 hpi). With the same method, poly(U) sequences of the same lengths were simultaneously found on the ligated viral negative-strand RNAs. Functional analyses of poly(A) tail length on specific viral RNA species, furthermore, revealed that translation, in vivo, of RNAs with the longer poly(A) tail was enhanced over those with the shorter poly(A). Although the mechanisms by which the tail lengths vary is unknown, experimental results together suggest that the length of the poly(A) and poly(U) tails is regulated. One potential function of regulated poly(A) tail length might be that for the coronavirus genome a longer poly(A) favors translation. The regulation of coronavirus translation by poly(A) tail length resembles that during embryonal development suggesting there may be mechanistic parallels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation

Similar to eukaryotic mRNA, the positive-strand coronavirus genome of ~30 kilobases is 5'-capped and 3'-polyadenylated. It has been demonstrated that the length of the coronaviral poly(A) tail is not static but regulated during infection; however, little is known regarding the factors involved in coronaviral polyadenylation and its regulation. Here, we show that during infection, the level of c...

متن کامل

Regulation of Poly(A) Tail and Translation during the Somatic Cell Cycle.

Poly(A) tails are critical for mRNA stability and translation. However, recent studies have challenged this view, showing that poly(A) tail length and translation efficiency are decoupled in non-embryonic cells. Using TAIL-seq and ribosome profiling, we investigate poly(A) tail dynamics and translational control in the somatic cell cycle. We find dramatic changes in poly(A) tail lengths of cell...

متن کامل

The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5'-to-3' polarity.

The human coronavirus 229E replicase gene encodes a protein, p66HEL, that contains a putative zinc finger structure linked to a putative superfamily (SF) 1 helicase. A histidine-tagged form of this protein, HEL, was expressed using baculovirus vectors in insect cells. The purified recombinant protein had in vitro ATPase activity that was strongly stimulated by poly(U), poly(dT), poly(C), and po...

متن کامل

Regulated nuclear polyadenylation of Xenopus albumin pre-mRNA.

Cytoplasmic regulation of the length of poly(A) on mRNA is a well-characterized process involved in translational control during development. In contrast, there is no direct in vivo evidence for regulation of the length of poly(A) added during nuclear pre-mRNA processing in somatic cells. We previously reported that Xenopus serum albumin [Schoenberg et al. (1989) Mol. Endocrinol. 3, 805-815] an...

متن کامل

Molecular dissection of mRNA poly(A) tail length control in yeast

In eukaryotic cells, newly synthesized mRNAs acquire a poly(A) tail that plays several fundamental roles in export, translation and mRNA decay. In mammals, PABPN1 controls the processivity of polyadenylation and the length of poly(A) tails during de novo synthesis. This regulation is less well-detailed in yeast. We have recently demonstrated that Nab2p is necessary and sufficient for the regula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013