Parvalbumin-Expressing GABAergic Neurons in Mouse Barrel Cortex Contribute to Gating a Goal-Directed Sensorimotor Transformation
نویسندگان
چکیده
Sensory processing in neocortex is primarily driven by glutamatergic excitation, which is counterbalanced by GABAergic inhibition, mediated by a diversity of largely local inhibitory interneurons. Here, we trained mice to lick a reward spout in response to whisker deflection, and we recorded from genetically defined GABAergic inhibitory neurons in layer 2/3 of the primary somatosensory barrel cortex. Parvalbumin-expressing (PV), vasoactive intestinal peptide-expressing (VIP), and somatostatin-expressing (SST) neurons displayed distinct action potential firing dynamics during task performance. Whereas SST neurons fired at low rates, both PV and VIP neurons fired at high rates both spontaneously and in response to whisker stimulation. After an initial outcome-invariant early sensory response, PV neurons had lower firing rates in hit trials compared to miss trials. Optogenetic inhibition of PV neurons during this time period enhanced behavioral performance. Hence, PV neuron activity might contribute causally to gating the sensorimotor transformation of a whisker sensory stimulus into licking motor output.
منابع مشابه
In Vivo Measurement of Cell-Type-Specific Synaptic Connectivity and Synaptic Transmission in Layer 2/3 Mouse Barrel Cortex
Intracellular recordings of membrane potential in vitro have defined fundamental properties of synaptic communication. Much less is known about the properties of synaptic connectivity and synaptic transmission in vivo. Here, we combined single-cell optogenetics with whole-cell recordings to investigate glutamatergic synaptic transmission in vivo from single identified excitatory neurons onto tw...
متن کاملPOm Thalamocortical Input Drives Layer-Specific Microcircuits in Somatosensory Cortex.
Higher-order thalamic nuclei, such as the posterior medial nucleus (POm) in the somatosensory system or the pulvinar in the visual system, densely innervate the cortex and can influence perception and plasticity. To systematically evaluate how higher-order thalamic nuclei can drive cortical circuits, we investigated cell-type selective responses to POm stimulation in mouse primary somatosensory...
متن کاملCharacterizing VIP Neurons in the Barrel Cortex of VIPcre/tdTomato Mice Reveals Layer-Specific Differences
Neocortical GABAergic interneurons have a profound impact on cortical circuitry and its information processing capacity. Distinct subgroups of inhibitory interneurons can be distinguished by molecular markers, such as parvalbumin, somatostatin, and vasoactive intestinal polypeptide (VIP). Among these, VIP-expressing interneurons sparked a substantial interest since these neurons seem to operate...
متن کاملMicrocircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex.
Synaptic interactions between nearby excitatory and inhibitory neurons in the neocortex are thought to play fundamental roles in sensory processing. Here, we have combined optogenetic stimulation, whole cell recordings, and computational modeling to define key functional microcircuits within layer 2/3 of mouse primary somatosensory barrel cortex. In vitro optogenetic stimulation of excitatory l...
متن کاملLayer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons
Previous studies have shown that parvalbumin-expressing neurons (CC-Parv neurons) connect the two hemispheres of motor and sensory areas via the corpus callosum, and are a functional part of the cortical circuit. Here we test the hypothesis that layer 5 CC-Parv neurons possess anatomical and molecular mechanisms which dampen excitability and modulate the gating of interhemispheric inhibition. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2016