Policy Learning - A Unified Perspective with Applications in Robotics
نویسندگان
چکیده
Policy Learning approaches are among the best suited methods for high-dimensional, continuous control systems such as anthropomorphic robot arms and humanoid robots. In this paper, we show two contributions: firstly, we show a unified perspective which allows us to derive several policy learning algorithms from a common point of view, i.e, policy gradient algorithms, naturalgradient algorithms and EM-like policy learning. Secondly, we present several applications to both robot motor primitive learning as well as to robot control in task space. Results both from simulation and several different real robots are shown.
منابع مشابه
Reinforcement Learning in Robotics: Applications and Real-World Challenges
In robotics, the ultimate goal of reinforcement learning is to endow robots with the ability to learn, improve, adapt and reproduce tasks with dynamically changing constraints based on exploration and autonomous learning. We give a summary of the state-of-the-art of reinforcement learning in the context of robotics, in terms of both algorithms and policy representations. Numerous challenges fac...
متن کاملA Survey on Policy Search for Robotics
Policy search is a subfield in reinforcement learning which focuses on finding good parameters for a given policy parametrization. It is well suited for robotics as it can cope with high-dimensional state and action spaces, one of the main challenges in robot learning. We review recent successes of both model-free and model-based policy search in robot learning. Model-free policy search is a ge...
متن کاملEvaluation of the Unified Model of the Sphere for Fisheye Cameras in Robotic Applications
A wide field of view is required for many robotic vision tasks. Such an aperture may be acquired by a fisheye camera, which provides a full image compared to catadioptric visual sensors, and does not increase the size and the weakness of the imaging system with respect to perspective cameras. While a unified model exists for all central catadioptric systems, many different models, approximating...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کامل