Eigenvalues and eigenvectors of tridiagonal matrices
نویسنده
چکیده
This paper is continuation of previous work by the present author, where explicit formulas for the eigenvalues associated with several tridiagonal matrices were given. In this paper the associated eigenvectors are calculated explicitly. As a consequence, a result obtained by WenChyuan Yueh and independently by S. Kouachi, concerning the eigenvalues and in particular the corresponding eigenvectors of tridiagonal matrices, is generalized. Expressions for the eigenvectors are obtained that differ completely from those obtained by Yueh. The techniques used herein are based on theory of recurrent sequences. The entries situated on each of the secondary diagonals are not necessary equal as was the case considered by Yueh.
منابع مشابه
Eigendecomposition of Block Tridiagonal Matrices
Block tridiagonal matrices arise in applied mathematics, physics, and signal processing. Many applications require knowledge of eigenvalues and eigenvectors of block tridiagonal matrices, which can be prohibitively expensive for large matrix sizes. In this paper, we address the problem of the eigendecomposition of block tridiagonal matrices by studying a connection between their eigenvalues and...
متن کاملEla Eigenvalues and Eigenvectors of Tridiagonal Matrices
This paper is continuation of previous work by the present author, where explicit formulas for the eigenvalues associated with several tridiagonal matrices were given. In this paper the associated eigenvectors are calculated explicitly. As a consequence, a result obtained by WenChyuan Yueh and independently by S. Kouachi, concerning the eigenvalues and in particular the corresponding eigenvecto...
متن کاملAn O(N2 ) Method for Computing the Eigensystem of N ˟ N Symmetric Tridiagonal Matrices by the Divide and Conquer Approach
An efficient method to solve the eigenproblem of N x N symmetric tridiagonal matrices is proposed. Unlike the standard eigensolvers that necessitate O(N3) operations to compute the eigenvectors of such matrices, the proposed method computes both the eigenvalues and eigenvectors with only O(N2) operations. The method is based on serial implementation of the recently introduced Divide and Conquer...
متن کاملThe Inverse Eigenvector Problem for Real Tridiagonal Matrices
A little known property of a pair of eigenvectors (column and row) of a real tridiagonal matrix is presented. With its help we can define necessary and sufficient conditions for the unique real tridiagonal matrix for which an approximate pair of complex eigenvectors are exact. Similarly we can designate the unique real tridiagonal matrix for which two approximate real eigenvectors, with differe...
متن کاملThe Characteristic Polynomial of Some Perturbed Tridiagonal k-Toeplitz Matrices
We generalize some recent results on the spectra of tridiagonal matrices, providing explicit expressions for the characteristic polynomial of some perturbed tridiagonal k-Toeplitz matrices. The calculation of the eigenvalues (and associated eigenvectors) follows straightforward. Mathematics Subject Classification: 15A18, 42C05, 33C45
متن کامل