An optical waveguide study on the nanopore formation in block copolymer/homopolymer thin films by selective solvent swelling.

نویسندگان

  • Dong Ha Kim
  • King Hang Aaron Lau
  • Wonchul Joo
  • Juan Peng
  • Unyong Jeong
  • Craig J Hawker
  • Jin Kon Kim
  • Thomas P Russell
  • Wolfgang Knoll
چکیده

Thin films of mixtures of asymmetric poly(styrene-block-methyl methacrylate) (PS-b-PMMA) diblock copolymers and PMMA homopolymers with cylindrical PMMA microdomains oriented normal to the substrate surface were used to couple optical modes in the Kretschmann configuration, and their optical properties were investigated by optical waveguide spectroscopy (OWS). The nanopore formation in the block copolymer (BCP) waveguide layer via selective solvent swelling and subsequent reannealing was monitored in terms of shifts in the coupling mode angles. The sequential swelling/reannealing of the initial mixture film resulted in a number of discrete or partially interconnected pores instead of cylindrical pores with a high aspect ratio. The simultaneous processes occurring inside and on top of the BCP waveguide layer were discerned independently with high selectivity for p- and s-polarization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract Submitted for the MAR13 Meeting of The American Physical Society In-situ Grazing-incidence Small-angle X-ray Scattering Study of Diblock Copolymer Thin Films during Solvent Annealing

Submitted for the MAR13 Meeting of The American Physical Society In-situ Grazing-incidence Small-angle X-ray Scattering Study of Diblock Copolymer Thin Films during Solvent Annealing XIAODAN GU, University of Massachusetts Amherst, ILJA GUNKEL, ALEXENDER HEXEMER, Lawrence Berkeley National lab, THOMAS RUSSELL, University of Massachusetts Amherst, UNIVERSITY OFMASSACHUSETTS AMHERST COLLABORATION...

متن کامل

Nanoporous block copolymer films using highly selective solvents and non-solvent extraction.

Nanoporous block copolymer thin films are fabricated by selective solvent swelling of the majority phase and subsequent rapid extraction with a miscible non-solvent (water). Selection of the initial solvent provides a facile route to tune the porosity of the films. Poly(butylnorbornene)-block-poly(hydroxyhexafluoroisopropyl norbornene) (BuHFA) is used to generate these porous thin films due to ...

متن کامل

Solvent-induced novel morphologies in diblock copolymer blend thin films.

We report the morphology and phase behaviors of blend thin films containing two polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymers with different blending compositions induced by a selective solvent for the PMMA block, which were studied by transmission electron microscopy (TEM). The neat asymmetric PS-b-PMMA diblock copolymers employed in this study, respectively coded as a...

متن کامل

Self-assembly of miktoarm star-like ABn block copolymers: from wet to dry brushes.

Self-assembly of miktoarm star-like ABn block copolymer in both selective solvent (A- or B-selective) and miscible homopolymer matrix (A or B homopolymer), that is, formation of micelles, was for the first time investigated by theoretical calculations based on self-consistent mean field theory. Interestingly, the calculation revealed that the size of micelles in solvent was smaller than that in...

متن کامل

Dewetting behavior of a block copolymer/homopolymer thin film on an immiscible homopolymer substrate.

Numerous previous studies have established that the addition of a microphase-ordered AB diblock copolymer to a thin homopolymer A (hA) film can slow, if not altogether prevent, film rupture and subsequent film dewetting on a hard substrate such as silica. However, only a few reports have examined comparable phenomena when the hA/AB blend resides on a soft B-selective surface, such as homopolyme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 31  شماره 

صفحات  -

تاریخ انتشار 2006