Gravity currents shoaling on a slope

نویسندگان

  • Bruce R. Sutherland
  • Delyle Polet
  • Margaret Campbell
چکیده

Laboratory experiments are performed to examine gravity currents propagating into an ambient of uniformly decreasing depth. Predominantly, the study is of a surface gravity current shoaling over a bottom slope as it approaches a corner between the horizontal surface and the sloping topography. For sufficiently high Reynolds number currents, they are found to propagate at a constant speed over the slope until the depth of the ambient below the nose is comparable to the depth of the current in the lee of the gravity current nose. It then decelerates at a constant rate set by the product of the reduced gravity, g′, and the magnitude of the topographic slope, s. The shape of the head evolves to form a front parallel to the slope itself and the ambient ahead of the current accelerates downslope with significant turbulence between the ambient and current head. The dependency of the deceleration upon g′s is anticipated from WKB-like extensions of steady-state gravity current theory that include the effect of the ambient depth in one case varying slowly in space as the current first passes over the slope and in another case varying slowly in time as the nose approaches the corner. However, the measured deceleration magnitude of 0.31( ± 0.01)g′s is found to be larger than these heuristic predictions. C © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818440]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Modeling of Saline Gravity Currents Using EARSM and Buoyant k- Turbulence Closures

Gravity currents are very common in nature and may appear in rivers, lakes, oceans, and the atmosphere. They are produced by the buoyant forces interacting between fluids of different densities and may introduce sediments and pollutants into water bodies. In this study, the hydrodynamics and propagation of gravity currents are investigated using WISE (Width Integrated Stratified Environments), ...

متن کامل

Dynamics of Two-Dimensional Turbulent Bottom Gravity Currents

In light of previous numerical studies demonstrating a strong sensitivity of the strength of thermohaline circulation to the representation of overflows in ocean general circulation models, the dynamics of bottom gravity currents are investigated using a two-dimensional, nonhydrostatic numerical model. The model explicitly resolves the Kelvin–Helmholtz instability, the main mechanism of mixing ...

متن کامل

On gravity currents over changing topography

We present experimental results on continuously supplied and well developed gravity currents moving from horizontal to concave or constant-slope boundaries. Results show that the gravity current velocity is in continuous spatial development and approaches an equilibrium state velocity only when the slope change is small. Following closely the theory of Turner (1973) we derive a general equation...

متن کامل

Hydrodynamic Modelling of Coral Reefs:Ningaloo Reef-Western Australia

As with all coral reef systems, the ecology of Ningaloo Reef is closely linked to water circulation which transport and disperse key material such as nutrients and larvae. Circulation on coral reefs may be driven by a number of forcing mechanisms including waves, tides, wind, and buoyancy effects. Surface waves interacting with reefs have long been known to dominate the currents on many coral r...

متن کامل

SPH Model of Solitary Waves Shoaling on a Mild Sloping Beach

Shoaling of solitary waves on a uniform plane beach connected to a constant-depth wave tank is investigated numerically using the smoothed particle hydrodynamics (SPH) method. The characteristics of water surface elevations have been analyzed for wave shoaling. To test the validity of the numerical model, the relative wave heights, the time histories of the free surface profiles are measured at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013