Magnetoelectric quasi-(0-3) nanocomposite heterostructures.
نویسندگان
چکیده
Magnetoelectric composite thin films hold substantial promise for applications in novel multifunctional devices. However, there are presently shortcomings for both the extensively studied bilayer epitaxial (2-2) and vertically architectured nanocomposite (1-3) film systems, restricting their applications. Here we design a novel growth strategy to fabricate an architectured nanocomposite heterostructure with magnetic quasiparticles (0) embedded in a ferroelectric film matrix (3) by alternately growing (2-2) and (1-3) layers within the film. The new heteroepitaxial films not only overcome the clamping effect from substrate, but also significantly suppress the leakage current paths through the ferromagnetic phase. We demonstrate, by focusing on switching characteristics of the piezoresponse, that the heterostructure shows magnetic field dependence of piezoelectricity due to the improved coupling enabled by good connectivity amongst the piezoelectric and magnetostrictive phases. This new architectured magnetoelectric heterostructures may open a new avenue for applications of magnetoelectric films in micro-devices.
منابع مشابه
The role of film reemission and gas scattering processes on the stoichiometry of laser deposited films
Related Articles Heteroepitaxial growth and characterization of ZnO films on Gd3Ga5O12 garnet substrates J. Appl. Phys. 112, 103530 (2012) Growth and interfacial properties of epitaxial CaCuO2 thin films J. Appl. Phys. 112, 103529 (2012) Field dependency of magnetoelectric coupling in multilayered nanocomposite arrays: Possible contribution from surface spins Appl. Phys. Lett. 101, 222902 (2012...
متن کاملUnderstanding and designing magnetoelectric heterostructures guided by computation: progresses, remaining questions, and perspectives
Magnetoelectric composites and heterostructures integrate magnetic and dielectric materials to produce new functionalities, e.g., magnetoelectric responses that are absent in each of the constituent materials but emerge through the coupling between magnetic order in the magnetic material and electric order in the dielectric material. The magnetoelectric coupling in these composites and heterost...
متن کاملQuantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface
Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanism...
متن کاملAbstract for an Invited Paper for the MAR11 Meeting of The American Physical Society Electric field control of magnetism in multiferroic heterostructures1
for an Invited Paper for the MAR11 Meeting of The American Physical Society Electric field control of magnetism in multiferroic heterostructures1 CARLOS A.F. VAZ, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland Much interest is being devoted to designing systems where magnetic and ferroelectric orders coexist (multiferroics), and where the presence of magnetoelectric coupling could enabl...
متن کاملReversible strain control of magnetic anisotropy in magnetoelectric heterostructures at room temperature
The ability to tune both magnetic and electric properties in magnetoelectric (ME) composite heterostructures is crucial for multiple transduction applications including energy harvesting or magnetic field sensing, or other transduction devices. While large ME coupling achieved through interfacial strain-induced rotation of magnetic anisotropy in magnetostrictive/piezoelectric multiferroic heter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 6 شماره
صفحات -
تاریخ انتشار 2015