Blow up of solutions to generalized Keller–Segel model
نویسندگان
چکیده
The existence and nonexistence of global in time solutions is studied for a class of equations generalizing the chemotaxis model of Keller and Segel. These equations involve Lévy diffusion operators and general potential type nonlinear terms.
منابع مشابه
Volume effects in the Keller-Segel model: energy estimates preventing blow-up
We obtain a priori estimates for the classical chemotaxis model of Patlak, Keller and Segel when a nonlinear diffusion or a nonlinear chemosensitivity is considered accounting for the finite size of the cells. We will show how entropy estimates give natural conditions on the nonlinearities implying the absence of blow-up for the solutions.
متن کاملBoundedness vs. blow-up in the Keller-Segel system
The fully parabolic Keller-Segel chemotaxis system { ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0, vt = ∆v − v + u, x ∈ Ω, t > 0, is considered under homogeneous Neumann boundary conditions in bounded domains Ω ⊂ R, n ≥ 1. We demonstrate rigorous analytical techniques which can be used to identify situations when solutions either remain bounded, or exhibit a blow-up phenomenon. In the latter case, which is ...
متن کاملLarge mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis.
In two space dimensions, the parabolic-parabolic Keller-Segel system shares many properties with the parabolic-elliptic Keller-Segel system. In particular, solutions globally exist in both cases as long as their mass is less than a critical threshold M(c). However, this threshold is not as clear in the parabolic-parabolic case as it is in the parabolic-elliptic case, in which solutions with mas...
متن کاملCross Diffusion Preventing Blow-Up in the Two-Dimensional Keller-Segel Model
Abstract. A (Patlak-) Keller-Segel model in two space dimensions with an additional crossdiffusion term in the equation for the chemical signal is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical substance. This allows one to prove, for arbitrarily small cross diffusion, the global existence of ...
متن کاملNew Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model
We develop a family of new interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model. This model is described by a system of two nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reaction-diffusion equation for the chemoattractant concentration. It has been recently shown that the convective part of this system is of a mixed hyperbol...
متن کامل