Self-Tuning Clustering: An Adaptive Clustering Method for Transaction Data

نویسندگان

  • Ching-Huang Yun
  • Kun-Ta Chuang
  • Ming-Syan Chen
چکیده

In this paper, we devise an efficient algorithm for clustering market-basket data items. Market-basket data analysis has been well addressed in mining association rules for discovering the set of large items which are the frequently purchased items among all transactions. In essence, clustering is meant to divide a set of data items into some proper groups in such a way that items in the same group are as similar to one another as possible. In view of the nature of clustering market basket data, we present a measurement, called the small-large (SL) ratio, which is in essence the ratio of the number of small items to that of large items. Clearly, the smaller the SL ratio of a cluster, the more similar to one another the items in the cluster are. Then, by utilizing a self-tuning technique for adaptively tuning the input and output SL ratio thresholds, we develop an efficient clustering algorithm, algorithm STC (standing for Self-Tuning Clustering), for clustering market-basket data. The objective of algorithm STC is “Given a database of transactions, determine a clustering such that the average SL ratio is minimized.” We conduct several experiments on the real data and the synthetic workload for performance studies. It is shown by our experimental results that by utilizing the self-tuning technique to adaptively minimize the input and output SL ratio thresholds, algorithm STC performs very well. Specifically, algorithm STC not only incurs an execution time that is significantly smaller than that by prior works but also leads to the clustering results of very good quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Spectral Clustering Algorithm Based on the Importance of Shared Nearest Neighbors

The construction of a similarity matrix is one significant step for the spectral clustering algorithm; while the Gaussian kernel function is one of the most common measures for constructing the similarity matrix. However, with a fixed scaling parameter, the similarity between two data points is not adaptive and appropriate for multi-scale datasets. In this paper, through quantitating the value ...

متن کامل

Multi-Output Adaptive Neuro-Fuzzy Inference System for Prediction of Dissolved Metal Levels in Acid Rock Drainage: a Case Study

Pyrite oxidation, Acid Rock Drainage (ARD) generation, and associated release and transport of toxic metals are a major environmental concern for the mining industry. Estimation of the metal loading in ARD is a major task in developing an appropriate remediation strategy. In this study, an expert system, the Multi-Output Adaptive Neuro-Fuzzy Inference System (MANFIS), was used for estimation of...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods

Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...

متن کامل

An Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks

LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002