Cyclosporin A promotes tumor angiogenesis in a calcineurin-independent manner by increasing mitochondrial reactive oxygen species.

نویسندگان

  • Alice Yao Zhou
  • Sandra Ryeom
چکیده

UNLABELLED The widely used immunosuppressant cyclosporin A, a potent calcineurin inhibitor, significantly increases the incidence of cancer in organ transplant patients. Calcineurin signaling is an important mediator of VEGF signaling in endothelial cells. Negative regulation of calcineurin by its endogenous inhibitor, Down Syndrome Candidate Region-1 (DSCR1), suppresses tumor growth and angiogenesis, in contrast to the effect observed after long-term cyclosporin A treatment. Despite the significance of calcineurin signaling in endothelial cells, the consequences of cyclosporin A on tumor angiogenesis have not been investigated. Using an in vivo model of skin carcinogenesis, prolonged treatment with cyclosporin A promoted tumor growth and angiogenesis. The addition of cyclosporin A to endothelial cells in vitro increased proliferation and migration in a calcineurin-independent manner and is associated with increased mitochondrial reactive oxygen species (ROS). Co-treatment with antioxidants significantly abrogated cyclosporin A-induced endothelial cell activation. Furthermore, mice treated with antioxidants were protected against cyclosporin A-mediated tumor progression. Taken together, these findings suggest that cyclosporin A affects endothelial cells in a calcineurin-independent manner to potentiate tumor growth by promoting tumor angiogenesis through increasing mitochondrial ROS production. This work identifies a previously undescribed mechanism underlying a significantly adverse off-target effect of cyclosporin A and suggests that co-treatment with antioxidants would inhibit the tumor-promoting effects of cyclosporin A. IMPLICATIONS Targeting the proangiogenic effects of cyclosporin A may be useful in the management of transplant-associated cancers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Cyclosporin A-induced oxidative stress is not the consequence of an increase in mitochondrial membrane potential.

Cyclosporin A induces closure of the mitochondrial permeability transition pore. We aimed to investigate whether this closure results in concomitant increases in mitochondrial membrane potential (DeltaPsim) and the production of reactive oxygen species. Fluorescent probes were used to assess DeltaPsim (JC-1, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide), reactiv...

متن کامل

Oxidative stress in angiogenesis and vascular disease.

Despite the damaging effect on tissues at a high concentration, it has been gradually established that oxidative stress plays a positive role during angiogenesis. In adults, physiological or pathological angiogenesis is initiated by tissue demands for oxygen and nutrients, resulting in a hypoxia/reoxygenation cycle, which, in turn promotes the formation of reactive oxygen species (ROS). The ROS...

متن کامل

Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing.

Cellular oxygen sensing is required for hypoxia-inducible factor-1alpha stabilization, which is important for tumor cell survival, proliferation, and angiogenesis. Here we find that terpestacin, a small molecule previously identified in a screen of microbial extracts, binds to the 13.4-kDa subunit (UQCRB) of mitochondrial Complex III, resulting in inhibition of hypoxia-induced reactive oxygen s...

متن کامل

Tumor angiogenesis is caused by single melanoma cells in a manner dependent on reactive oxygen species and NF-κB.

Melanomas have a high angiogenic potential, but respond poorly to medical treatment and metastasize very early. To understand the early events in tumor angiogenesis, animal models with high tumor resolution and blood vessel resolution are required, which provide the opportunity to test the ability of small molecule inhibitors to modulate the angiogenic tumor program. We have established a trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 12 11  شماره 

صفحات  -

تاریخ انتشار 2014