PSTPIP: A Tyrosine Phosphorylated Cleavage Furrow–associated Protein that Is a Substrate for a PEST Tyrosine Phosphatase
نویسندگان
چکیده
We have investigated proteins which interact with the PEST-type protein tyrosine phosphatase, PTP hematopoietic stem cell fraction (HSCF), using the yeast two-hybrid system. This resulted in the identification of proline, serine, threonine phosphatase interacting protein (PSTPIP), a novel member of the actin- associated protein family that is homologous to Schizosaccharomyces pombe CDC15p, a phosphorylated protein involved with the assembly of the actin ring in the cytokinetic cleavage furrow. The binding of PTP HSCF to PSTPIP was induced by a novel interaction between the putative coiled-coil region of PSTPIP and the COOH-terminal, proline-rich region of the phosphatase. PSTPIP is tyrosine phosphorylated both endogenously and in v-Src transfected COS cells, and cotransfection of dominant-negative PTP HSCF results in hyperphosphorylation of PSTPIP. This dominant-negative effect is dependent upon the inclusion of the COOH-terminal, proline-rich PSTPIP-binding region of the phosphatase. Confocal microscopy analysis of endogenous PSTPIP revealed colocalization with the cortical actin cytoskeleton, lamellipodia, and actin-rich cytokinetic cleavage furrow. Overexpression of PSTPIP in 3T3 cells resulted in the formation of extended filopodia, consistent with a role for this protein in actin reorganization. Finally, overexpression of mammalian PSTPIP in exponentially growing S. pombe results in a dominant-negative inhibition of cytokinesis. PSTPIP is therefore a novel actin-associated protein, potentially involved with cytokinesis, whose tyrosine phosphorylation is regulated by PTP HSCF.
منابع مشابه
Protein Tyrosine Phosphatase-PEST Regulates Focal Adhesion Disassembly, Migration, and Cytokinesis in Fibroblasts
In this article, we show that, in transfected COS-1 cells, protein tyrosine phosphatase (PTP)-PEST translocates to the membrane periphery following stimulation by the extracellular matrix protein fibronectin. When plated on fibronectin, PTP-PEST (-/-) fibroblasts display a strong defect in motility. 3 h after plating on fibronectin, the number and size of vinculin containing focal adhesions wer...
متن کاملIdentification of p130(cas) as a substrate for the cytosolic protein tyrosine phosphatase PTP-PEST.
PTP-PEST is a ubiquitously expressed, cytosolic, mammalian protein tyrosine phosphatase (PTP) which exhibits high specific activity in vitro. We have investigated the substrate specificity of PTP-PEST by a novel substrate-trapping approach in combination with in vitro dephosphorylation experiments. We initially identified a prominent 130-kDa tyrosine-phosphorylated protein in pervanadate-treate...
متن کاملFyn and PTP-PEST–mediated Regulation of Wiskott-Aldrich Syndrome Protein (WASp) Tyrosine Phosphorylation Is Required for Coupling T Cell Antigen Receptor Engagement to WASp Effector Function and T Cell Activation
Involvement of the Wiskott-Aldrich syndrome protein (WASp) in promoting cell activation requires its release from autoinhibitory structural constraints and has been attributed to WASp association with activated cdc42. Here, however, we show that T cell development and T cell receptor (TCR)-induced proliferation and actin polymerization proceed normally in WASp-/- mice expressing a WASp transgen...
متن کاملRegulation of fibroblast motility by the protein tyrosine phosphatase PTP-PEST.
The protein tyrosine phosphatase PTP-PEST is a cytosolic enzyme that displays a remarkable degree of selectivity for tyrosine-phosphorylated p130(Cas) as a substrate, both in vitro and in intact cells. We have investigated the physiological role of PTP-PEST using Rat1 fibroblast-derived stable cell lines that we have engineered to overexpress PTP-PEST. These cell lines exhibit normal levels of ...
متن کاملThe noncatalytic domain of protein-tyrosine phosphatase-PEST targets paxillin for dephosphorylation in vivo.
The noncatalytic domain of protein-tyrosine phosphatase (PTP)-PEST contains a binding site for the focal adhesion-associated protein paxillin. This binding site has been narrowed to a 52-residue sequence that is composed of two nonoverlapping, weak paxillin binding sites. The PTP-PEST binding site on paxillin has been mapped to the two carboxyl-terminal LIM (lin11, isl-1, and mec-3) domains. Tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 138 شماره
صفحات -
تاریخ انتشار 1997