Electrostatic Interactions of Peptides with Lipid Membranes: Competitive Binding between Cationic Peptides and Divalent Counterions
نویسندگان
چکیده
In this thesis, we investigate a variety of problems involving the interaction of cationic peptides with lipid membranes. To this end we adopt Poisson-Boltzmann (PB) theory and coarse-grained models of these molecules. We first examine the electrostatic interaction of a positively-charged peptide with a negatively charged membrane immersed in a salty solution. In particular, we study how this interaction is influenced by peptides geometry, valence of salt ions, and lipid demixibility. Also we develop a more analytically tractable approach to peptide-membrane association, and then compare it with our PB approach. Finally, we study the interactions of cationic antimicrobial peptides with the outer leaflet of the outer membrane of Gram-negative bacteria. In particular, we incorporate charge discreteness and thus transverse charge correlations on the membrane surface. The main effect of charge discreteness is to enhance the affinity of counterions, especially multivalent ones, for the membrane. This effort enables us to study the competitive binding between cationic peptides and divalent counterions. Our results offer a physical explanation for the observed preferred binding of cationic antimicrobial peptides onto the outer leaflet of Gram-negative bacteria over divalent counterions.
منابع مشابه
Interactions of Cationic Peptides and Ions with Negatively Charged Lipid Bilayers
In this thesis we study the interactions of ions and cationic peptides with a negatively charged lipid bilayer in an ionic solution where the electrostatic interactions are screened. We first examine the problem of charge renormalization and inversion of a highly charged bilayer with low dielectric constant. To be specific, we consider an asymmetrically charged lipid bilayer, in which only one ...
متن کاملDNA condensation in two dimensions.
We have found that divalent electrolyte counterions common in biological cells (Ca(2+), Mg(2+), and Mn(2+) ) can condense anionic DNA molecules confined to two-dimensional cationic surfaces. DNA-condensing agents in vivo include cationic histones and polyamines spermidine and spermine with sufficiently high valence (Z) 3 or larger. In vitro studies show that electrostatic forces between DNA cha...
متن کاملRole of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation.
The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the...
متن کاملElectrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides
Cooperative interactions between RNA and vesicle membranes on the prebiotic earth may have led to the emergence of primitive cells. The membrane surface offers a potential platform for the catalysis of reactions involving RNA, but this scenario relies upon the existence of a simple mechanism by which RNA could become associated with protocell membranes. Here, we show that electrostatic interact...
متن کاملLipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes.
Linear cationic antimicrobial peptides are a diverse class of molecules that interact with a wide range of cell membranes. Many of these peptides disrupt cell integrity by forming membrane-spanning pores that ultimately lead to their death. Despite these peptides high potency and ability to evade acquired bacterial drug resistance, there is a lack of knowledge on their selectivity and activity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010