Different genetic requirements for repair of replication-born double-strand breaks by sister-chromatid recombination and break-induced replication

نویسندگان

  • Felipe Cortés-Ledesma
  • Cristina Tous
  • Andrés Aguilera
چکیده

Homologous recombination (HR) is the major mechanism used to repair double-strand breaks (DSBs) that result from replication, but a study of repair of DSBs specifically induced during S-phase is lacking. Using an inverted-repeat assay in which a DSB is generated by the encountering of the replication fork with nicks, we can physically detect repair by sister-chromatid recombination (SCR) and intra-chromatid break-induced replication (IC-BIR). As expected, both events depend on Rad52, but, in contrast to previous data, both require Rad59, suggesting a prominent role of Rad59 in repair of replication-born DSBs. In the absence of Rad51, SCR is severely affected while IC-BIR increases, a phenotype that is also observed in the absence of Rad54 but not of its paralog Rdh54/Tid1. These data are consistent with SCR occurring by Rad51-dependent mechanisms assisted by Rad54, and indicate that in the absence of strand exchange-dependent SCR, breaks can be channeled to IC-BIR, which works efficiently in the absence of Rad51. Our study provides molecular evidence for inversions between repeats occurring by BIR followed by single-strand annealing (SSA) in the absence of strand exchange.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange.

Molecular studies on double-strand break (DSB) repair in mitosis are usually performed with enzymatically induced DSBs, but spontaneous DSBs might arise because of replication failures, for example when replication encounters nicks. To study repair of replication-born DSBs, we defined a system in Saccharomyces cerevisiae for the induction of a site-specific single-strand break. We show that a 2...

متن کامل

A new role for Rrm3 in repair of replication-born DNA breakage by sister chromatid recombination

Replication forks stall at different DNA obstacles such as those originated by transcription. Fork stalling can lead to DNA double-strand breaks (DSBs) that will be preferentially repaired by homologous recombination when the sister chromatid is available. The Rrm3 helicase is a replisome component that promotes replication upon fork stalling, accumulates at highly transcribed regions and preve...

متن کامل

The Dot1 histone methyltransferase and the Rad9 checkpoint adaptor contribute to cohesin-dependent double-strand break repair by sister chromatid recombination in Saccharomyces cerevisiae.

Genomic integrity is threatened by multiple sources of DNA damage. DNA double-strand breaks (DSBs) are among the most dangerous types of DNA lesions and can be generated by endogenous or exogenous agents, but they can arise also during DNA replication. Sister chromatid recombination (SCR) is a key mechanism for the repair of DSBs generated during replication and it is fundamental for maintainin...

متن کامل

Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination

While regulating the choice between homologous recombination and non-homologous end joining (NHEJ) as mechanisms of double-strand break (DSB) repair is exerted at several steps, the key step is DNA end resection, which in Saccharomyces cerevisiae is controlled by the MRX complex and the Sgs1 DNA helicase or the Sae2 and Exo1 nucleases. To assay the role of DNA resection in sister-chromatid reco...

متن کامل

Histone H3K56 Acetylation, Rad52, and Non-DNA Repair Factors Control Double-Strand Break Repair Choice with the Sister Chromatid

DNA double-strand breaks (DSBs) are harmful lesions that arise mainly during replication. The choice of the sister chromatid as the preferential repair template is critical for genome integrity, but the mechanisms that guarantee this choice are unknown. Here we identify new genes with a specific role in assuring the sister chromatid as the preferred repair template. Physical analyses of sister ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007