The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI.
نویسندگان
چکیده
Inactivating mutations of the gene encoding parkin are responsible for some forms of autosomal recessive juvenile Parkinson disease. Parkin is a ubiquitin ligase that ubiquitinates misfolded proteins targeted for the proteasome-dependent protein degradation pathway. Using the yeast two-hybrid system and co-immunoprecipitation methods, we identified synaptotagmin XI as a protein that interacts with parkin. Parkin binds to the C2A and C2B domains of synaptotagmin XI resulting in the polyubiquitination of synaptotagmin XI. Truncated and missense mutated parkins reduce parkin-sytXI binding affinity and ubiquitination. Parkin-mediated ubiquitination also enhances the turnover of sytXI. In sporadic PD brain sections, sytXI was found in the core of the Lewy bodies. Since synaptotagmin XI is a member of the synaptotagmin family that is well characterized in their importance for vesicle formation and docking, the interaction with this protein suggests a role for parkin in the regulation of the synaptic vesicle pool and in vesicle release. Loss of parkin could thus affect multiple proteins controlling vesicle pools, docking and release and explain the deficits in dopaminergic function seen in patients with parkin mutations.
منابع مشابه
An Unfolded Putative Transmembrane Polypeptide, which Can Lead to Endoplasmic Reticulum Stress, Is a Substrate of Parkin
A putative G protein-coupled transmembrane polypeptide, named Pael receptor, was identified as an interacting protein with Parkin, a gene product responsible for autosomal recessive juvenile Parkinsonism (AR-JP). When overexpressed in cells, this receptor tends to become unfolded, insoluble, and ubiquitinated in vivo. The insoluble Pael receptor leads to unfolded protein-induced cell death. Par...
متن کاملA molecular explanation for the recessive nature of parkin-linked Parkinson’s disease
Mutations in the park2 gene, encoding the RING-inBetweenRING-RING E3 ubiquitin ligase parkin, cause 50% of autosomal recessive juvenile Parkinsonism cases. More than 70 known pathogenic mutations occur throughout parkin, many of which cluster in the inhibitory amino-terminal ubiquitin-like domain, and the carboxy-terminal RING2 domain that is indispensable for ubiquitin transfer. A structural r...
متن کاملParkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1.
Parkinson's disease is a common neurodegenerative disorder in which familial-linked genes have provided novel insights into the pathogenesis of this disorder. Mutations in Parkin, a ring-finger-containing protein of unknown function, are implicated in the pathogenesis of autosomal recessive familial Parkinson's disease. Here, we show that Parkin binds to the E2 ubiquitin-conjugating human enzym...
متن کاملGene Therapy for Parkinson's Disease
Advances in molecular biology and virology in recent years have enabled the technology of gene transfer to proceed forward. Parkinson's disease (PD) is a particularly appropriate target for gene therapy since the brain pathology is fully characterized and relatively well circumscribed largely within the nigrostriatal dopaminergic neurons. In addition, the search for genetic mutations responsibl...
متن کاملThe Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson’s Disease
Understanding the function of genes mutated in hereditary forms of Parkinson's disease yields insight into disease etiology and reveals new pathways in cell biology. Although mutations or variants in many genes increase the susceptibility to Parkinson's disease, only a handful of monogenic causes of parkinsonism have been identified. Biochemical and genetic studies reveal that the products of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 12 20 شماره
صفحات -
تاریخ انتشار 2003