Sparse Matrix Decompositions and Graph Characterizations
نویسندگان
چکیده
Zeros in positive definite correlation matrices arise frequently in probability and statistics, and are intimately related to the notion of stochastic independence. The question of when zeros (i.e., sparsity) in a positive definite matrix A are preserved in its Cholesky decomposition, and vice versa, was addressed by Paulsen et al. [19] [see Journal of Functional Analysis, 85, 151-178]. In particular, they prove that for the pattern of zeros in A to be retained in the Cholesky decomposition of A, the pattern of zeros in A has to necessarily correspond to a chordal (or decomposable) graph associated with a specific type of vertex ordering. This result therefore also yields a characterization of chordal graphs in terms of sparse positive definite matrices, and has proved to be extremely useful in probabilistic and statistical analysis of Markov random fields. Now, consider a positive definite matrix A and its Cholesky decomposition given by A = LDL , where L is lower triangular with unit diagonal entries, and D a diagonal matrix with positive entries. In this paper, we prove that a necessary and sufficient condition for zeros (i.e., sparsity) in a positive definite matrix A to be preserved in its associated Cholesky matrix L, and in addition also preserved in the inverse of the Cholesky matrix L−1, is that the pattern of zeros corresponds to a co-chordal or homogeneous graph associated with a specific type of vertex ordering. We proceed to provide a second characterization of this class of graphs in terms of determinants of submatrices that correspond to cliques in the graph. These results add to the growing body of literature in the field of sparse matrix decompositions, and also prove to be critical ingredients in the probabilistic analysis of an important class of Markov random fields.
منابع مشابه
Factorization-Based Graph Repartitionings
The paper deals with the parallel computation of matrix factorization using graph partitioning-based domain decomposition. It is well-known that the partitioned graph may have both a small separator and well-balanced domains but sparse matrix decompositions on domains can be completely unbalanced. In this paper we propose to enhance the iterative strategy for balancing the decompositions from [...
متن کاملA proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions
We propose an algorithmic framework for convex minimization problems of composite functions with two terms: a self-concordant part and a possibly nonsmooth regularization part. Our method is a new proximal Newton algorithm with local quadratic convergence rate. As a specific problem instance, we consider sparse precision matrix estimation problems in graph learning. Via a careful dual formulati...
متن کاملOn path-cycle decompositions of triangle-free graphs
In this work, we study conditions for the existence of length-constrained path-cycle decompositions, that is, partitions of the edge set of a graph into paths and cycles of a given minimum length. Our main contribution is the characterization of the class of all triangle-free graphs with odd distance at least 3 that admit a path-cycle decomposition with elements of length at least 4. As a conse...
متن کاملModeling 1D Distributed-Memory Dense Kernels for an Asynchronous Multifrontal Sparse Solver
To solve sparse linear systems multifrontal methods rely on dense partial LU decompositions of so-called frontal matrices; we consider a parallel, asynchronous setting in which several frontal matrices can be factored simultaneously. In this context, to address performance and scalability issues of acyclic pipelined asynchronous factorization kernels, we study models to revisit properties of le...
متن کاملStrongly-Bounded Sparse Decompositions of Minor Free Graphs
As networks grow large and complex, a key approach in managing information and constructing algorithms is to decompose the network into locality-preserving clusters. Then, information and/or management can be divided between the clusters, such that every node is responsible only for clusters for which it belongs. Such decompositions into locality sensitive clusters have become key tools in netw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012