Ramification Estimates for the Hyperbolic Gauss Map
نویسنده
چکیده
We give the best possible upper bound on the number of exceptional values and totally ramified value number of the hyperbolic Gauss map for pseudo-algebraic Bryant surfaces and some partial results on the Osserman problem for algebraic Bryant surfaces. Moreover, we study the value distribution of the hyperbolic Gauss map for complete constant mean curvature one faces in de Sitter three-space.
منابع مشابه
M ar 1 99 6 On the space of harmonic 2 - spheres in C P 2
Carrying further work of T.A. Crawford, we show that each component of the space of harmonic maps from the 2-sphere to complex projective 2-space of degree d and energy 4πE is a smooth closed submanifold of the space of all C j maps (j ≥ 2). We achieve this by showing that the Gauss transform which relates them to spaces of holomorphic maps of given degree and ramification index is smooth and h...
متن کاملA note on surfaces with prescribed oriented Euclidean Gauss map
We present another proof of a theorem due to Hoffman and Osserman in Euclidean space concerning the determination of a conformal immersion by its Gauss map. Our approach depends on geometric quantities, that is, the hyperbolic Gauss map G and formulae obtained in hyperbolic space. We use the idea that the Euclidean Gauss map and the hyperbolic Gauss map with some compatibility relation determin...
متن کاملValue Distribution of the Hyperbolic Gauss Maps for Flat Fronts in Hyperbolic Three-space
We give an effective estimate for the totally ramified value number of the hyperbolic Gauss maps of complete flat fronts in the hyperbolic three-space. As a corollary, we give the upper bound of the number of exceptional values of them for some topological cases. Moreover, we obtain some new examples for this class.
متن کاملL_1 operator and Gauss map of quadric surfaces
The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...
متن کاملThe Gauss Map of Minimal Surfaces in the Heisenberg Group
We study the Gauss map of minimal surfaces in the Heisenberg group Nil3 endowed with a left-invariant Riemannian metric. We prove that the Gauss map of a nowhere vertical minimal surface is harmonic into the hyperbolic plane H. Conversely, any nowhere antiholomorphic harmonic map into H is the Gauss map of a nowhere vertical minimal surface. Finally, we study the image of the Gauss map of compl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008