Array biosensor for simultaneous identification of bacterial, viral, and protein analytes.
نویسندگان
چکیده
The array biosensor was fabricated to analyze multiple samples simultaneously for multiple analytes. The sensor utilized a standard sandwich immunoassay format: Antigen-specific "capture" antibodies were immobilized in a patterned array on the surface of a planar waveguide and bound analyte was subsequently detected using fluorescent tracer antibodies. This study describes the analysis of 126 blind samples for the presence of three distinct classes of analytes. To address potential complications arising from using a mixture of tracer antibodies in the multianalyte assay, three single-analyte assays were run in parallel with a multianalyte assay. Mixtures of analytes were also assayed to demonstrate the sensor's ability to detect more than a single species at a time. The array sensor was capable of detecting viral, bacterial, and protein analytes using a facile 14-min assay with sensitivity levels approaching those of standard ELISA methods. Limits of detection for Bacillus globigii, MS2 bacteriophage, and staphylococcal enterotoxin B (SEB) were 10(5) cfu/mL, 10(7) pfu/mL, and 10 ng/mL, respectively. The array biosensor also analyzed multiple samples simultaneously and detected mixtures of the different types of analytes in the multianalyte format.
منابع مشابه
A comprehensive biosensor integrated with a ZnO nanorod FET array for selective detection of glucose, cholesterol and urea.
We report a novel straightforward approach for simultaneous and highly-selective detection of multi-analytes (i.e. glucose, cholesterol and urea) using an integrated field-effect transistor (i-FET) array biosensor without any interference in each sensor response. Compared to analytically-measured data, performance of the ZnO nanorod based i-FET array biosensor is found to be highly reliable for...
متن کاملClinical Validation of Integrated Nucleic Acid and Protein Detection on an Electrochemical Biosensor Array for Urinary Tract Infection Diagnosis
BACKGROUND Urinary tract infection (UTI) is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, ...
متن کاملReal-Time Biosensor Platform: Fully Integrated Device for Impedimetric Assays
An impedimetric biosensor platform for bio-affinity assays was developed based on real-time, label-free electrochemical detection performed via direct interface to electronic digital data processing. The sensor array consists of 15 gold microelectrode pairs enclosed in three reaction chambers and bio-functionalized with specific DNA probes. The impedance change caused by specific target analyte...
متن کاملArray biosensor for detection of biohazards.
A fluorescence-based biosensor has been developed for simultaneous analysis of multiple samples for multiple biohazardous agents. A patterned array of antibodies immobilized on the surface of a planar waveguide is used to capture antigen present in samples; bound analyte is then quantified by means of fluorescent tracer antibodies. Upon excitation of the fluorophore by a small diode laser, a CC...
متن کاملA microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers
Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 71 17 شماره
صفحات -
تاریخ انتشار 1999