Skin surface cooling improves orthostatic tolerance in normothermic individuals.
نویسندگان
چکیده
Previous studies suggest that skin surface cooling (SSC) preserves orthostatic tolerance; however, this hypothesis has not been experimentally tested. Thus the purpose of this project was to identify whether SSC improves orthostatic tolerance in otherwise normothermic individuals. Eight subjects underwent two presyncope limited graded lower-body negative pressure (LBNP) tolerance tests. On different days, and randomly assigned, LBNP tolerance was assessed under control conditions and during SSC (perfused 16 degrees C water through tube-lined suit worn by each subject). Orthostatic tolerance was significantly elevated in each individual due to SSC, as evidenced by a significant increase in a standardized cumulative stress index (normothermia 564 +/- 58 mmHg.min; SSC 752 +/- 58 mmHg.min; P < 0.05). At most levels of LBNP, blood pressure during the SSC tolerance test was significantly greater than during the control test. Furthermore, the reduction in cerebral blood flow velocity was attenuated during some of the early stages of LBNP for the SSC trial. Plasma norepinephrine concentrations were significantly higher during LBNP with SSC, suggesting that SSC may improve orthostatic tolerance through increased sympathetic activity. These data demonstrate that SSC is effective in improving orthostatic tolerance in otherwise normothermic individuals.
منابع مشابه
Skin surface cooling improves orthostatic tolerance following prolonged head-down bed rest.
Prolonged exposure to microgravity, as well as its ground-based analog, head-down bed rest (HDBR), reduces orthostatic tolerance in humans. While skin surface cooling improves orthostatic tolerance, it remains unknown whether this could be an effective countermeasure to preserve orthostatic tolerance following HDBR. We therefore tested the hypothesis that skin surface cooling improves orthostat...
متن کاملBaroreflex control of muscle sympathetic nerve activity during skin surface cooling.
Skin surface cooling improves orthostatic tolerance through a yet to be identified mechanism. One possibility is that skin surface cooling increases the gain of baroreflex control of efferent responses contributing to the maintenance of blood pressure. To test this hypothesis, muscle sympathetic nerve activity (MSNA), arterial blood pressure, and heart rate were recorded in nine healthy subject...
متن کاملEffect of skin surface cooling on central venous pressure during orthostatic challenge.
Orthostatic stress leads to a reduction in central venous pressure (CVP), which is an index of cardiac preload. Skin surface cooling has been shown to improve orthostatic tolerance, although the mechanism resulting in this outcome is unclear. One possible mechanism may be that skin surface cooling attenuates the drop in CVP during an orthostatic challenge, thereby preserving cardiac filling. To...
متن کاملSkin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans.
Orthostatic tolerance is reduced in the heat-stressed human. The purpose of this project was to identify whether skin-surface cooling improves orthostatic tolerance. Nine subjects were exposed to 10 min of 60 degrees head-up tilting in each of four conditions: normothermia (NT-tilt), heat stress (HT-tilt), normothermia plus skin-surface cooling 1 min before and throughout tilting (NT-tilt(cool)...
متن کاملInsufficient cutaneous vasoconstriction leading up to and during syncopal symptoms in the heat stressed human.
As much as 50% of cardiac output can be distributed to the skin in the hyperthermic human, and therefore the control of cutaneous vascular conductance (CVC) becomes critical for the maintenance of blood pressure. Little is known regarding the magnitude of cutaneous vasoconstriction in profoundly hypotensive individuals while heat stressed. This project investigated the hypothesis that leading u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 286 1 شماره
صفحات -
تاریخ انتشار 2004