Lyapunov Exponents. Ii

نویسنده

  • Steven Finch
چکیده

almost always. For example, λ = ln(2) is experimentally verified for the logistic case f(x) = 4x (1 − x) and u0 = 1/3. This definition is meaningful as well for multidimensional maps f : R → R. It is not true, however, that the norm of a product of Jacobian matrices is equal to the product of their norms; thus the calculational technique (based on the chain rule) used in [2] fails for m > 1. Consider the classical Lorenz system [3, 4, 5, 6, 7]  dx/dt = −10(x− y), x(0) = 0, dy/dt = 28x− y − x z, y(0) = 1, dz/dt = x y − 8 3 z, z(0) = 0

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lyapunov Spectrum for Conformal Expanding Maps and Axiom-A Surface Diffeomorphisms

Lyapunov exponents measure the exponential rate of divergence of infinitesimally close orbits of a smooth dynamical system. These exponents are intimately related to the global stochastic behavior of the system and are fundamental invariants of a smooth dynamical system. In [EP], Eckmann and Procaccia suggested an analysis of Lyapunov exponents for chaotic dynamical systems. This suggestion was...

متن کامل

Spurious Lyapunov Exponents Computed Using the Eckmann - Ruelle Procedure

Lyapunov exponents, important invariants of a complicated dynamical process, can be difficult to determine from experimental data. In particular, when using embedding theory to build chaotic attractors in a reconstruction space, extra “spurious” Lyapunov exponents can arise that are not Lyapunov exponents of the original system. By studying the local linearization matrices that are key to a pop...

متن کامل

Stochastic Stability of Lyapunov Exponents and Oseledets Splittings for Semi-invertible Matrix Cocycles

We establish (i) stability of Lyapunov exponents and (ii) convergence in probability of Oseledets spaces for semi-invertible matrix cocycles, subjected to small random perturbations. The first part extends results of Ledrappier and Young [18] to the semiinvertible setting. The second part relies on the study of evolution of subspaces in the Grassmannian, where the analysis developed, based on h...

متن کامل

Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics

Introduction 1 1. Lyapunov exponents of dynamical systems 3 2. Examples of systems with nonzero exponents 6 3. Lyapunov exponents associated with sequences of matrices 18 4. Cocycles and Lyapunov exponents 24 5. Regularity and Multiplicative Ergodic Theorem 31 6. Cocycles over smooth dynamical systems 46 7. Methods for estimating exponents 54 8. Local manifold theory 62 9. Global manifold theor...

متن کامل

Lyapunov Exponents and Strange Attractors in Discrete and Continuous Dynamical Systems

4 Lyapunov Exponents 5 4.1 Definition and basic properties . . . . 6 4.2 Constraints on the Lyapunov exponents 7 4.3 Calculating the largest Lyapunov exponent method 1 . . . . . . . . . . . 7 4.4 Calculating the largest Lyapunov exponent method 2 . . . . . . . . . . . 8 4.4.1 Maps . . . . . . . . . . . . . . 8 4.4.2 Continuous systems . . . . . . 8 4.5 Calculating the other Lyapunov exponents ....

متن کامل

Estimating Lyapunov Exponents Inchaotic Time Series with Locallyweighted

Nonlinear dynamical systems often exhibit chaos, which is characterized by sensitive dependence on initial values or more precisely by a positive Lyapunov exponent. Recognizing and quantifying chaos in time series represents an important step toward understanding the nature of random behavior and revealing the extent to which short-term forecasts may be improved. We will focus on the statistica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007