Formation of gallium arsenide nanostructures in Pyrex glass.

نویسندگان

  • Matiar M R Howlader
  • Fangfang Zhang
  • M Jamal Deen
چکیده

In this paper, we report on a simple, low-cost process to grow GaAs nanostructures of a few nm diameter and ∼50 nm height in Pyrex glass wafers. These nanostructures were grown by sequential plasma activation of GaAs and Pyrex glass surfaces using a low-temperature hybrid plasma bonding technology in air. Raman analyses of the activated surfaces show gallium oxide and arsenic oxide, as well as suppressed non-bridging oxygen with aluminate and boroxol chains in glass. The flow of alkaline ions toward the cathode and the replacement of alkaline ions by Ga and As ions in glass result in the growth of GaAs nanostructures in nanopores/nanoscratches in glass. These nanopores/nanoscratches are believed to be the origin of the growth of the nanostructures. It was found that the length of the GaAs nanostructures may be controlled by an electrostatic force. Cross-sectional observation of the bonded interface using high-resolution transmission electron microscopy confirms the existence of the nanostructures. A possible application of the nanostructures in glass is a filtration system for biomolecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the current of UV ray radiation on PIN Silicon photodiode and Gallium Arsenide

The high-energy UV ray radiation on PIN Silicon photodiodes reduces the optimal parameters of these photodiodes. In this paper, by representing a model, we compare the effect of UV dose on the bright current in these two types of photodiodes and confirm the analytic relationships in order to simulate a model with the help of the Silvaco- Atlas software. In this model, Silicon photodiodes and Ga...

متن کامل

Surface Localization of Buried III–V Semiconductor Nanostructures

In this work, we study the top surface localization of InAs quantum dots once capped by a GaAs layer grown by molecular beam epitaxy. At the used growth conditions, the underneath nanostructures are revealed at the top surface as mounding features that match their density with independence of the cap layer thickness explored (from 25 to 100 nm). The correspondence between these mounds and the b...

متن کامل

Nano-cones Formed on a Surface of Semiconductors by Laser Radiation: Technology, Model and Properties

The new laser method for nanostructures formation on a surface of semiconductors Si, Ge, GaAs and SiGe, CdZnTe solid solutions is proposed. For the first time was shown the possibility of graded band gap structure formation in elementary semiconductors. Thermogradient effect has a main role in initial stage of nano-cones and graded band gap structure formation by laser radiation in semiconductors.

متن کامل

Effects of low-power Gallium Aluminum Arsenide Laser irradiation on the mast cells of skin wounds in rats

Background and aim: Low-power lasers relief pain in some musculoskeletal disorders and accelerate wound healing process. However, there are few reports on effects of low-power lasers on mast cells. In this study the effects of low-power gallium aluminium arsenide laser (Ga.Al.As.laser) radiation on number and degranulation of mast cells of open skin wound bed of rats were studied using qu...

متن کامل

Formation of Lateral Low Density In(Ga)As Quantum Dot Pairs in GaAs Nanoholes

In this work we present a growth procedure to form lateral In(Ga)As quantum dot pairs by using a low density, 2 × 108 cm-2, GaAs nanohole template previously formed in situ by droplet homoepitaxy. In particular, by changing the arsenic pressure at which InAs is grown on the template, we demonstrate the possibility to select the formation of single quantum dots (QD) or QD pairs inside each of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 24 31  شماره 

صفحات  -

تاریخ انتشار 2013