Reactivity, photolability, and computational studies of the ruthenium nitrosyl complex with a substituted cyclam fac-[Ru(NO)Cl2(κ3N4,N8,N11(1-carboxypropyl)cyclam)]Cl·H2O.
نویسندگان
چکیده
Chemical reactivity, photolability, and computational studies of the ruthenium nitrosyl complex with a substituted cyclam, fac-[Ru(NO)Cl(2)(κ(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl·H(2)O ((1-carboxypropyl)cyclam = 3-(1,4,8,11-tetraazacyclotetradecan-1-yl)propionic acid)), (I) are described. Chloride ligands do not undergo aquation reactions (at 25 °C, pH 3). The rate of nitric oxide (NO) dissociation (k(obs-NO)) upon reduction of I is 2.8 s(-1) at 25 ± 1 °C (in 0.5 mol L(-1) HCl), which is close to the highest value found for related complexes. The uncoordinated carboxyl of I has a pK(a) of ∼3.3, which is close to that of the carboxyl of the non coordinated (1-carboxypropyl)cyclam (pK(a) = 3.4). Two additional pK(a) values were found for I at ∼8.0 and ∼11.5. Upon electrochemical reduction or under irradiation with light (λ(irr) = 350 or 520 nm; pH 7.4), I releases NO in aqueous solution. The cyclam ring N bound to the carboxypropyl group is not coordinated, resulting in a fac configuration that affects the properties and chemical reactivities of I, especially as NO donor, compared with analogous trans complexes. Among the computational models tested, the B3LYP/ECP28MDF, cc-pVDZ resulted in smaller errors for the geometry of I. The computational data helped clarify the experimental acid-base equilibria and indicated the most favourable site for the second deprotonation, which follows that of the carboxyl group. Furthermore, it showed that by changing the pH it is possible to modulate the electron density of I with deprotonation. The calculated NO bond length and the Ru/NO charge ratio indicated that the predominant canonical structure is [Ru(III)NO], but the Ru-NO bond angles and bond index (b.i.) values were less clear; the angles suggested that [Ru(II)NO(+)] could contribute to the electronic structure of I and b.i. values indicated a contribution from [Ru(IV)NO(-)]. Considering that some experimental data are consistent with a [Ru(II)NO(+)] description, while others are in agreement with [Ru(III)NO], the best description for I would be a linear combination of the three canonical forms, with a higher weight for [Ru(II)NO(+)] and [Ru(III)NO].
منابع مشابه
Ru-NO and Ru-NO2 bonding linkage isomerism in cis-[Ru(NO)(NO)(bpy)2](2+/+) complexes - a theoretical insight.
Ruthenium nitrosyl complexes have received considerable attention due to the fact that they are able to store, transfer and release NO in a controlled manner. It is well-known that the NO reactivity of ruthenium nitrosyl complexes can be modulated with the judicious choice of equatorial and axial ligands. In this piece of research we elucidate the nature of the Ru-NO and Ru-NO2 bonding in a cis...
متن کاملFactors That Control the Reactivity of Cobalt(III)-Nitrosyl Complexes in Nitric Oxide Transfer and Dioxygenation Reactions: A Combined Experimental and Theoretical Investigation.
Metal-nitrosyl complexes are key intermediates involved in many biological and physiological processes of nitric oxide (NO) activation by metalloproteins. In this study, we report the reactivities of mononuclear cobalt(III)-nitrosyl complexes bearing N-tetramethylated cyclam (TMC) ligands, [(14-TMC)Co(III)(NO)](2+) and [(12-TMC)Co(III)(NO)](2+), in NO-transfer and dioxygenation reactions. The C...
متن کاملCrystal structure of trans-diammine(1,4,8,11-tetraazacyclotetradecane-κ4 N)chromium(III) tetrachloridozincate chloride monohydrate from synchrotron data
The asymmetric unit of the title complex salt, [Cr(C10H24N4)(NH3)2][ZnCl4]Cl·H2O, is comprised of four halves of the Cr(III) complex cations (the counterparts being generated by application of inversion symmetry), two tetra-chlorido-zincate anions, two chloride anions and two water mol-ecules. Each Cr(III) ion is coordinated by the four N atoms of the cyclam (1,4,8,11-tetra-aza-cyclo-tetra-deca...
متن کاملPlatinium-Ruthenium electrocatalyst as sensor electrode for methanol oxidation
Hybrid nanocomposites of binary Pt-Ru/Polyaniline were prepared by oxidative polymerization of aniline andformation Pt and Ru nanoparticles. The polymerization of aniline was carried out in the presence of Potassiumhexa cyano Platinate (IV) and Ruthenium (III) nitrosyl nitrate as oxidizing agents. During the reaction anilinemonomers undergo oxidation and form polyaniline (PANi) whereas the redu...
متن کاملSynthesis, structural studies, and oxidation catalysis of the late-first-row-transition-metal complexes of a 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam.
The first 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam ligand has been synthesized and successfully complexed to Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+) cations. X-ray crystal structures were obtained for all six complexes and demonstrate pentadentate binding of the ligand with the requisite cis-V configuration of the cross-bridged cyclam ring in all cases, leaving a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 40 24 شماره
صفحات -
تاریخ انتشار 2011