Essentially Strictly Differentiable Lipschitz Functions
نویسنده
چکیده
In this paper we address some of the most fundamental questions regarding the diierentiability structure of locally Lipschitz functions deened on Banach spaces. For example, we examine the relationship between inte-grability, D-representability and strict diierentiability. In addition to this, we show that on a large class of Banach spaces there is a signiicant family of locally Lipschitz functions which are integrable, D-representable and possess desirable diierentiability properties. We also present some striking applications of our results to distance functions.
منابع مشابه
Certain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces
We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...
متن کاملCompact composition operators on certain analytic Lipschitz spaces
We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.
متن کاملDIFFERENTIABILITY OF p-HARMONIC FUNCTIONS ON METRIC MEASURE SPACES
We study p-harmonic functions on metric measure spaces, which are formulated as minimizers to certain energy functionals. For spaces supporting a p-Poincaré inequality, we show that such functions satisfy an infinitesmal Lipschitz condition almost everywhere. This result is essentially sharp, since there are examples of metric spaces and p-harmonic functions that fail to be locally Lipschitz co...
متن کاملAlgorithmic Aspects of Lipschitz Functions
We characterize the variation functions of computable Lipschitz functions. We show that a real z is computably random if and only if every computable Lipschitz function is differentiable at z. Furthermore, a real z is Schnorr random if and only if every Lipschitz function with L1-computable derivative is differentiable at z. For the implications from left to right we rely on literature results....
متن کاملApproximate Subgradients and Coderivatives in Rn
We show that in two dimensions or higher, the Mordukhovich-loffe approximate subdifferential and Clarke subdifferential may differ almost everywhere for real-valued Lipschitz functions. Uncountably many Frechet differentiable vector-valued Lipschitz functions differing by more than constants can share the same Mordukhovich-Ioffe coderivatives. Moreover, the approximate Jacobian associated with ...
متن کامل