Transient Heat Conduction Between Rough Sliding Surfaces

نویسندگان

  • Yuwei Liu
  • J. R. Barber
چکیده

When two rough bodies slide against each other, asperities on the opposing surfaces interact with each other, defining a transient contact and heat conduction problem. We represent each body by a Greenwood and Williamson asperity model with a Gaussian height distribution of identical spherical asperities. The heat transfer during a typical asperity interaction is analyzed, and the results are combined with the height distributions to determine the mean heat flux and the mean normal contact pressure as functions of the separation between reference planes in the two surfaces. We find that the effective thermal conductance is an approximately linear function of nominal contact pressure, but it also increases with the square root of the sliding speed and decreases with the 3/4 power of the combined RMS roughness. The results can be used to define an effective thermal contact resistance and division of frictional heat in macroscale (e.g., finite element) models of engineering components, requiring as input only the measured roughness and material properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of pool boiling heat transfer: effect of bubbles sliding on the heating surface

Pool boiling on surfaces where sliding bubble mechanism plays an important role has been studied. The heat transfer phenomenon for such cases has been analysed. The model considers different mechanisms such as latent heat transfer due to microlayer evaporation, transient conduction due to thermal boundary layer reformation, natural convection and heat transfer due to the sliding bubbles. Both m...

متن کامل

Heat Transfer in Semitransparent Medium Caused by Laser Pulse

In this paper, the combination of conduction with radiation into a semitransparent medium which includes absorption, emission and scattering has been investigated. In order to Study the conduction in medium, the Non-Fourier heat conduction has been applied. In this model there is a time delay between heat flux and temperature gradient. Also, in contrast with Fourier heat conduction, the speed o...

متن کامل

Thermal Joint Resistances of Conforming Rough Surfaces with Gas-Filled Gaps

An approximate analytical model is developed for predicting the heat transfer of interstitial gases in the gap between conforming rough contacts. A simple relationship for the gap thermal resistance is derived by assuming that the contacting surfaces are of uniform temperature and that the gap heat transfer area and the apparent contact area are identical. The model covers the four regimes of g...

متن کامل

The method of fundamental solutions for transient heat conduction in functionally graded materials: some special cases

In this paper, the Method of Fundamental Solutions (MFS) is extended to solve some special cases of the problem of transient heat conduction in functionally graded materials. First, the problem is transformed to a heat equation with constant coefficients using a suitable new transformation and then the MFS together with the Tikhonov regularization method is used to solve the resulting equation.

متن کامل

Analytical Analysis of The Dual-phase-lag Heat Transfer Equation in a Finite Slab with Periodic Surface Heat Flux (RESEARCH NOTE)

This work uses the dual-phase-lag (DPL) model of heat conduction to demonstrate the effect of temperature gradient relaxation time on the result of non-Fourier hyperbolic conduction in a finite slab subjected to a periodic thermal disturbance. DPL model combines the wave features of hyperbolic conduction with a diffusion-like feature of the evidence not captured by the hyperbolic case. For the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014