Glutamate but not glycine agonist affinity for NMDA receptors is influenced by small cations.
نویسندگان
چکیده
NMDA receptor currents desensitize in an agonist-dependent manner when either the glutamate or glycine agonist is subsaturating. This may result from a conformational change in the NMDA receptor protein that lowers glutamate and glycine binding site affinity induced by co-agonist binding, channel opening, or ion permeation. We have used whole-cell voltage clamp of cultured hippocampal neurons with agonist paired-pulse protocols to demonstrate that glutamate and glycine dissociate 7.9- and 6.8-fold slower in the absence of their respective co-agonists than when their co-agonists are present. Paired-pulse and desensitization protocols were used to show that co-agonist binding and channel opening are sufficient to cause a reduction in glycine affinity, but extracellular sodium or magnesium binding was required in addition to conformational changes leading to channel opening to reduce glutamate binding-site affinity. Use of cesium or potassium as the major extracellular cation prevented the reduction of glutamate affinity. In addition, the use of choline-, sodium-, or cesium-based intracellular solutions did not alter desensitization characteristics, indicating that the site responsible for reduction of glutamate affinity is not in the intracellular domain. The fact that the reduction of glutamate affinity is dependent on certain small extracellular cations whereas the reduction of glycine affinity is insensitive to such cations indicates that conformational changes induced by the binding of glutamate are not completely paralleled by the conformational changes induced by glycine. Although glutamate and glycine are essential co-agonists, these data suggest that they have differential roles in the process of NMDA receptor activation.
منابع مشابه
The IGF-derived tripeptide Gly-Pro-Glu is a weak NMDA receptor agonist.
Glutamate acts as the universal agonist at ionotropic glutamate receptors in part because of its high degree of conformational flexibility. Other amino acids and small peptides, however, can activate N-methyl-d-aspartate (NMDA) receptors, albeit usually with lower affinity and efficacy. Here, we examined the action of glycine-proline-glutamate (GPE), a naturally occurring tripeptide formed in t...
متن کاملThe N-terminal domains of both NR1 and NR2 subunits determine allosteric Zn2+ inhibition and glycine affinity of N-methyl-D-aspartate receptors.
The N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors (iGluRs) is a tetrameric protein composed of homologous NR1 and NR2 subunits, which require the binding of glycine and glutamate, respectively, for efficient channel gating. The extracellular N-terminal domains (NTDs) of iGluR subunits show sequence homology to the bacterial periplasmic leucine/isoleucine/valine binding p...
متن کاملIdentification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors.
The NMDA type of ligand-gated glutamate receptor requires the presence of both glutamate and glycine for gating. These receptors are hetero-oligomers of NR1 and NR2 subunits. Previously it was thought that the binding sites for glycine and glutamate were formed by residues on the NR1 subunit. Indeed, it has been shown that the effects of glycine are controlled by residues on the NR1 subunit, an...
متن کاملInteractions between the glycine and glutamate binding sites of the NMDA receptor.
The interactions between the glycine and glutamate binding sites of the NMDA receptor have been studied in outside-out patches and synapses from hippocampal neurons in culture using rapid drug application techniques. Desensitization of NMDA receptor-mediated currents elicited by glutamate in newly excised outside-out patches was reduced in the presence of saturating concentrations of glycine. T...
متن کاملDevelopmental changes in NMDA receptor glycine affinity and ifenprodil sensitivity reveal three distinct populations of NMDA receptors in individual rat cortical neurons.
Previous work with recombinant receptors has shown that the identity of the NMDA NR2 subunit influences receptor affinity for both glutamate and glycine. We have investigated the developmental change in NMDA receptor affinity for both glutamate and glycine in acutely dissociated parietal cortex neurons of the rat, together with the expression during ontogeny of NR2A and NR2B mRNA and protein. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2002