Flanking sequences profoundly alter polyglutamine toxicity in yeast.

نویسندگان

  • Martin L Duennwald
  • Smitha Jagadish
  • Paul J Muchowski
  • Susan Lindquist
چکیده

Protein misfolding is the molecular basis for several human diseases. How the primary amino acid sequence triggers misfolding and determines the benign or toxic character of the misfolded protein remains largely obscure. Among proteins that misfold, polyglutamine (polyQ) expansion proteins provide an interesting case: Each causes a distinct neurodegenerative disease that selectively affects different neurons. However, all are broadly expressed and most become toxic when the glutamine expansion exceeds approximately 39 glutamine residues. The disease-causing polyQ expansion proteins differ profoundly in the amino acids flanking the polyQ region. We therefore hypothesized that these flanking sequences influence the specific toxic character of each polyQ expansion protein. Using a yeast model, we find that sequences flanking the polyQ region of human huntingtin exon I can convert a benign protein to a toxic species and vice versa. Further, we observe that flanking sequences can direct polyQ misfolding to at least two morphologically distinct types of polyQ aggregates. Very tight aggregates always are benign, whereas amorphous aggregates can be toxic. We thereby establish a previously undescribed systematic characterization of the influence of flanking amino acid sequences on polyQ toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A network of protein interactions determines polyglutamine toxicity.

Several neurodegenerative diseases are associated with the toxicity of misfolded proteins. This toxicity must arise from a combination of the amino acid sequences of the misfolded proteins and their interactions with other factors in their environment. A particularly compelling example of how profoundly these intramolecular and intermolecular factors can modulate the toxicity of a misfolded pro...

متن کامل

F-Actin Binding Regions on the Androgen Receptor and Huntingtin Increase Aggregation and Alter Aggregate Characteristics

Protein aggregation is associated with neurodegeneration. Polyglutamine expansion diseases such as spinobulbar muscular atrophy and Huntington disease feature proteins that are destabilized by an expanded polyglutamine tract in their N-termini. It has previously been reported that intracellular aggregation of these target proteins, the androgen receptor (AR) and huntingtin (Htt), is modulated b...

متن کامل

Correlation of Inter-Locus Polyglutamine Toxicity with CAG•CTG Triplet Repeat Expandability and Flanking Genomic DNA GC Content

Dynamic expansions of toxic polyglutamine (polyQ)-encoding CAG repeats in ubiquitously expressed, but otherwise unrelated, genes cause a number of late-onset progressive neurodegenerative disorders, including Huntington disease and the spinocerebellar ataxias. As polyQ toxicity in these disorders increases with repeat length, the intergenerational expansion of unstable CAG repeats leads to anti...

متن کامل

Modulation of prion-dependent polyglutamine aggregation and toxicity by chaperone proteins in the yeast model.

In yeast, aggregation and toxicity of the expanded polyglutamine fragment of human huntingtin strictly depend on the presence of the endogenous self-perpetuating aggregated proteins (prions), which contain glutamine/asparagine-rich domains. Some chaperones of the Hsp100/70/40 complex, modulating propagation of yeast prions, were also reported to influence polyglutamine aggregation in yeast, but...

متن کامل

Monomeric, Oligomeric and Polymeric Proteins in Huntington Disease and Other Diseases of Polyglutamine Expansion

Huntington disease and other diseases of polyglutamine expansion are each caused by a different protein bearing an excessively long polyglutamine sequence and are associated with neuronal death. Although these diseases affect largely different brain regions, they all share a number of characteristics, and, therefore, are likely to possess a common mechanism. In all of the diseases, the causativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 29  شماره 

صفحات  -

تاریخ انتشار 2006