Dynamic Gaussian Force Field Controlled Kalman Filtering For Pointing Interaction
نویسندگان
چکیده
As human computer interaction is extending from the desk to the whole room, modalities allowing for distant interaction become more important. Distant interaction however, is inherently inaccurate. Assisting technologies, like force fields, sticky targets, and target expansion have been shown to improve pointing tasks. We present a new variant of force fields that are modeled using Gaussian distributions, which makes placement and configuration as well as overlap handling straight forward. In addition, the force fields are dynamically activated by predicting intended targets, to allow for natural and fluent movements. Results from a user study show, that the dynamic Gaussian fields can speed up the time needed to click a button with a pointing gesture by up to 60%.
منابع مشابه
On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR
Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...
متن کاملA Robust Extended H∞ Filtering Approach to Multi-Robot Cooperative Localization in Dynamic Indoor Environments
Multi-robot cooperative localization serves as an essential task for a team of mobile robots to work within an unknown environment. Based on the real-time laser scanning data interaction, a robust approach is proposed to obtain optimal multi-robot relative observations by using the Metric-based Iterative Closest Point (MbICP) algorithm, which makes it possible to utilize the surrounding environ...
متن کاملA Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کاملKalman Filtering with State Constraints
The Kalman filter is the optimal minimum-variance state estimator for linear dynamic systems with Gaussian noise. In addition, the Kalman filter is the optimal linear state estimator for linear dynamic systems with non-Gaussian noise. For nonlinear systems various modifications of the Kalman filter (e.g., the extended Kalman filter, the unscented Kalman filter, and the particle filter) have bee...
متن کاملSequential Bayesian estimation techniques for the tracking problem in computer vision
— This paper presents review of techniques and algorithms used for filtering and data association in visual tracking. Kalman filter is an optimal Bayesian filter for linear dynamic models with Gaussian noise. Most of the processes and systems in real world are nonlinear, and in these situations there is extension of Kalman filter named the Extended Kalman filter (EKF). In case when the noise is...
متن کامل