Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained tasks and messages on networked embedded systems
نویسندگان
چکیده
Scheduling for a directed acyclic graph (DAG) on networked embedded systems is to maximize concurrency and minimize inter-processor communication for minimum end-to-end worst-case response time (WCRT). Time accuracy and synchronization are critical for scheduling on heterogeneous networked embedded systems, where computing and networking are both heterogeneous and deeply jointed. Most algorithms use the upward rank value for task prioritization, and the earliest finish time for processor selection. In order to obtain accurate and efficient schedules in heterogeneous networked systems, the above approaches can be improved. Moreover, synchronization with tasks and messages is critical for end-to-end WCRT. However, task scheduling and message scheduling are isolated in most approaches in communication contention environments. In this paper, a heterogeneity-driven task scheduling algorithm called Heterogeneous Selection Value (HSV) based on the classicmodel, and a heterogeneity-driven end-to-end synchronized scheduling algorithm called Heterogeneous Selection Value on Communication Contention (HSV_CC) based on the communication contention model are proposed to address the above problems. Both benchmark and extensive experimental evaluation demonstrate significant performance improvement of the proposed algorithms. © 2015 Elsevier Inc. All rights reserved.
منابع مشابه
Green Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملDynamic End-to-End Guarantees in Distributed Real Time Systems
Many distributed real-time applications are structured as a set of processes communicating through synchronous channels. Unfortunately, process interactions and especially synchronous communications make the problem of predictably scheduling the tasks more complex. In distributed systems the local and remote tasks as well as the messages over the network must be properly scheduled and synchroni...
متن کاملTitle Link contention-constrained scheduling and mapping of tasks and messages to a network of heterogeneous processors
—In this paper, we consider the problem of scheduling and mapping precedence-constrained tasks to a network of heterogeneous processors. In such systems, processors are usually physically distributed, implying that the communication cost is considerably higher than in tightly coupled multiprocessors. Therefore, scheduling and mapping algorithms for such systems must schedule the tasks as well a...
متن کاملDynamic Voltage Scaling for Priority-Driven Distributed Real-Time Systems
Energy consumption is increasingly affecting battery life and cooling for computer systems. Dynamic Voltage and frequency Scaling (DVS) has been shown to substantially reduce the amount of power required for uniprocessor and multiprocessor real-time systems that have independent tasks or a statically computed schedule. However, no DVS algorithm has been demonstrated for tasks with precedence co...
متن کاملAn improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Parallel Distrib. Comput.
دوره 83 شماره
صفحات -
تاریخ انتشار 2015