Invariants of Complex Structures on Nilmanifolds
نویسنده
چکیده
Let (N, J) be a simply connected 2n-dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on N compatible with J to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to isometry and scaling. This uniqueness allows us to distinguish two complex structures with Riemannian data, giving rise to a great deal of invariants. We show how to use a Riemannian invariant: the eigenvalues of the Ricci operator, polynomial invariants and discrete invariants to give an alternative proof of the pairwise non-isomorphism between the structures which have appeared in the classification of abelian complex structures on 6-dimensional nilpotent Lie algebras given in [1]. We also present some continuous families in dimension 8.
منابع مشابه
Dolbeault Cohomology and Deformations of Nilmanifolds
In these notes I review some classes of invariant complex structures on nilmanifolds for which the Dolbeault cohomology can be computed by means of invariant forms, in the spirit of Nomizu’s theorem for de Rham cohomology. Moreover, deformations of complex structures are discussed. Small deformations remain in some cases invariant, so that, by Kodaira-Spencer theory, Dolbeault cohomology can be...
متن کاملOn Some Cohomological Properties of Almost Complex Manifolds
We study a special type of almost complex structures, called pure and full and introduced by T.J. Li and W. Zhang in [16], in relation to symplectic structures and Hard Lefschetz condition. We provide sufficient conditions to the existence of the above type of almost complex structures on compact quotients of Lie groups by discrete subgroups. We obtain families of pure and full almost complex s...
متن کاملFamilies of strong KT structures in six dimensions
This paper classifies Hermitian structures on 6-dimensional nilmanifolds M = Γ\G for which the fundamental 2-form is ∂∂-closed, a condition that is shown to depend only on the underlying complex structure J of M . The space of such J is described when G is the complex Heisenberg group, and explicit solutions are obtained from a limaçon-shaped curve in the complex plane. Related theory is used t...
متن کاملA Canonical Compatible Metric for Geometric Structures on Nilmanifolds
Let (N, γ) be a nilpotent Lie group endowed with an invariant geometric structure (cf. symplectic, complex, hypercomplex or any of their ‘almost’ versions). We define a left invariant Riemannian metric on N compatible with γ to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. We prove that minimal metrics...
متن کاملStability of Abelian Complex Structures
Let M = Γ\G be a nilmanifold endowed with an invariant complex structure. We prove that Kuranishi deformations of abelian complex structures are all invariant complex structures, generalizing a result in [5] for 2-step nilmanifolds. We characterize small deformations that remain abelian. As an application, we observe that at real dimension six, the deformation process of abelian complex structu...
متن کامل