Analysis of Inexact Trust-Region SQP Algorithms
نویسندگان
چکیده
In this paper we study the global convergence behavior of a class of composite–step trust–region SQP methods that allow inexact problem information. The inexact problem information can result from iterative linear systems solves within the trust–region SQP method or from approximations of first–order derivatives. Accuracy requirements in our trust– region SQP methods are adjusted based on feasibility and optimality of the iterates. In the absence of inexactness our global convergence theory is equal to that of Dennis, El–Alem, Maciel (SIAM J. Optim., 7 (1997), pp. 177–207). If all iterates are feasible, i.e., if all iterates satisfy the equality constraints, then our results are related to the known convergence analyses for trust–region methods with inexact gradient information for unconstrained optimization.
منابع مشابه
Analysis of Inexact Trust-Region Interior-Point SQP Algorithms
In this paper we analyze inexact trust–region interior–point (TRIP) sequential quadra– tic programming (SQP) algorithms for the solution of optimization problems with nonlinear equality constraints and simple bound constraints on some of the variables. Such problems arise in many engineering applications, in particular in optimal control problems with bounds on the control. The nonlinear constr...
متن کاملAnalysis of Inexact Trust { Region Interior { Point Sqpalgorithmsmatthias
In this paper we analyze inexact trust{region interior{point (TRIP) sequential quadra{ tic programming (SQP) algorithms for the solution of optimization problems with nonlinear equality constraints and simple bound constraints on some of the variables. Such problems arise in many engineering applications, in particular in optimal control problems with bounds on the control. The nonlinear constr...
متن کاملA Matrix-Free Trust-Region SQP Method for Equality Constrained Optimization
We develop and analyze a trust-region sequential quadratic programming (SQP) method for the solution of smooth equality constrained optimization problems, which allows the inexact and hence iterative solution of linear systems. Iterative solution of linear systems is important in large-scale applications, such as optimization problems with partial differential equation constraints, where direct...
متن کاملA Matrix-free Trust-region Sqp Method for Equality
We introduce and analyze a trust–region sequential quadratic programming (SQP) method for the solution of smooth equality constrained optimization problems, which allows the inexact and hence iterative solution of linear systems. Iterative solution of linear systems is important in large-scale applications, such as optimization problems with partial differential equation constraints, where dire...
متن کاملOn an inexact trust-region SQP-filter method for constrained nonlinear optimization
A class of trust-region algorithms is developed and analyzed for the solution of optimization problems with nonlinear equality and inequality constraints. Based on composite-step trust region methods and a filter approach, the resulting algorithm also does not require the computation of exact Jacobians; only Jacobian vector products are used along with approximate Jacobian matrices. As demonstr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 12 شماره
صفحات -
تاریخ انتشار 2002