Size-Based Isolation of Circulating Tumor Cells in Lung Cancer Patients Using a Microcavity Array System
نویسندگان
چکیده
BACKGROUND Epithelial cell adhesion molecule (EpCAM)-based enumeration of circulating tumor cells (CTC) has prognostic value in patients with solid tumors, such as advanced breast, colon, and prostate cancer. However, poor sensitivity has been reported for non-small cell lung cancer (NSCLC). To address this problem, we developed a microcavity array (MCA) system integrated with a miniaturized device for CTC isolation without relying on EpCAM expression. Here, we report the results of a clinical study on CTCs of advanced lung cancer patients in which we compared the MCA system with the CellSearch system, which employs the conventional EpCAM-based method. METHODS Paired peripheral blood samples were collected from 43 metastatic lung cancer patients to enumerate CTCs using the CellSearch system according to the manufacturer's protocol and the MCA system by immunolabeling and cytomorphological analysis. The presence of CTCs was assessed blindly and independently by both systems. RESULTS CTCs were detected in 17 of 22 NSCLC patients using the MCA system versus 7 of 22 patients using the CellSearch system. On the other hand, CTCs were detected in 20 of 21 small cell lung cancer (SCLC) patients using the MCA system versus 12 of 21 patients using the CellSearch system. Significantly more CTCs in NSCLC patients were detected by the MCA system (median 13, range 0-291 cells/7.5 mL) than by the CellSearch system (median 0, range 0-37 cells/7.5 ml) demonstrating statistical superiority (p = 0.0015). Statistical significance was not reached in SCLC though the trend favoring the MCA system over the CellSearch system was observed (p = 0.2888). The MCA system also isolated CTC clusters from patients who had been identified as CTC negative using the CellSearch system. CONCLUSIONS The MCA system has a potential to isolate significantly more CTCs and CTC clusters in advanced lung cancer patients compared to the CellSearch system.
منابع مشابه
Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients
Circulating tumor cells (CTCs), defined as tumor cells circulating in the peripheral blood of patients with solid tumors, are relatively rare. Diagnosis using CTCs is expected to help in the decision-making for precision cancer medicine. We have developed an automated microcavity array (MCA) system to detect CTCs based on the differences in size and deformability between tumor cells and normal ...
متن کاملEnumeration and Molecular Characterization of Tumor Cells in Lung Cancer Patients Using a Novel In Vivo Device for Capturing Circulating Tumor Cells.
PURPOSE The use of circulating tumor cells (CTC) as "liquid biopsy" is limited by the very low yield of CTCs available for subsequent analyses. Most in vitro approaches rely on small sample volumes (5-10 mL). EXPERIMENTAL DESIGN Here, we used a novel approach, the GILUPI CellCollector, which enables an in vivo isolation of CTCs from peripheral blood. In total, 50 lung cancer patients were scr...
متن کاملHigh-Density Dielectrophoretic Microwell Array for Detection, Capture, and Single-Cell Analysis of Rare Tumor Cells in Peripheral Blood
Development of a reliable platform and workflow to detect and capture a small number of mutation-bearing circulating tumor cells (CTCs) from a blood sample is necessary for the development of noninvasive cancer diagnosis. In this preclinical study, we aimed to develop a capture system for molecular characterization of single CTCs based on high-density dielectrophoretic microwell array technolog...
متن کاملPersonalized Medicine and Imaging Enumeration and Molecular Characterization of Tumor Cells in Lung Cancer Patients Using a Novel In Vivo Device for Capturing Circulating Tumor Cells
Purpose: The use of circulating tumor cells (CTC) as "liquid biopsy" is limited by the very low yield of CTCs available for subsequent analyses. Most in vitro approaches rely on small sample volumes (5–10 mL). Experimental Design: Here, we used a novel approach, the GILUPI CellCollector, which enables an in vivo isolation of CTCs from peripheral blood. In total, 50 lung cancer patients were scr...
متن کاملIsolation and retrieval of circulating tumor cells using centrifugal forces
Presence and frequency of rare circulating tumor cells (CTCs) in bloodstreams of cancer patients are pivotal to early cancer detection and treatment monitoring. Here, we use a spiral microchannel with inherent centrifugal forces for continuous, size-based separation of CTCs from blood (Dean Flow Fractionation (DFF)) which facilitates easy coupling with conventional downstream biological assays....
متن کامل