Finite Groups and Hyperbolic Manifolds
نویسندگان
چکیده
The isometry group of a compact n-dimensional hyperbolic man-ifold is known to be finite. We show that for every n ≥ 2, every finite group is realized as the full isometry group of some compact hyperbolic n-manifold. The cases n = 2 and n = 3 have been proven by Greenberg [G] and Ko-jima [K], respectively. Our proof is non constructive: it uses counting results from subgroup growth theory to show that such manifolds exist.
منابع مشابه
Mathematische Annalen Coxeter groups and hyperbolic manifolds
The theory of Coxeter groups is used to provide an algebraic construction of finite volume hyperbolic manifolds. Combinatorial properties of finite images of these groups can be used to compute the volumes of the resulting manifolds. Three examples, in 4, 5 and 6-dimensions, are given, each of very small volume, and in one case of smallest possible volume.
متن کاملHyperbolic Dehn surgery on geometrically infinite 3-manifolds
In this paper we extend Thurston’s hyperbolic Dehn surgery theorem to a class of geometrically infinite hyperbolic 3-manifolds. As an application we prove a modest density theorem for Kleinian groups. We also discuss hyperbolic Dehn surgery on geometrically finite hypebolic cone-manifolds.
متن کاملSeparation of Relatively Quasiconvex Subgroups
Suppose that all hyperbolic groups are residually finite. The following statements follow: In relatively hyperbolic groups with peripheral structures consisting of finitely generated nilpotent subgroups, quasiconvex subgroups are separable; Geometrically finite subgroups of non-uniform lattices in rank one symmetric spaces are separable; Kleinian groups are subgroup separable. We also show that...
متن کاملIncommensurability Criteria for Kleinian Groups
The purpose of this note is to present a criterion for an infinite collection of distinct hyperbolic 3-manifolds to be commensurably infinite. (Here, a collection of hyperbolic 3-manifolds is commensurably infinite if it contains representatives from infinitely many commensurability classes.) Namely, such a collection M is commensurably infinite if there is a uniform upper bound on the volumes ...
متن کاملCat(0) and Cat(−1) Fillings of Hyperbolic Manifolds
We give new examples of hyperbolic and relatively hyperbolic groups of cohomological dimension d for all d ≥ 4 (see Theorem 2.13). These examples result from applying CAT(0)/CAT(−1) filling constructions (based on singular doubly warped products) to finite volume hyperbolic manifolds with toral cusps. The groups obtained have a number of interesting properties, which are established by analyzin...
متن کاملAspherical Manifolds with Relatively Hyperbolic Fundamental Groups
We show that the aspherical manifolds produced via the relative strict hyperbolization of polyhedra enjoy many group-theoretic and topological properties of open finite volume negatively pinched manifolds, including relative hyperbolicity, nonvanishing of simplicial volume, co-Hopf property, finiteness of outer automorphism group, absence of splitting over elementary subgroups, acylindricity, a...
متن کامل