The Secreted Antifungal Protein Thionin 2.4 in Arabidopsis thaliana Suppresses the Toxicity of a Fungal Fruit Body Lectin from Fusarium graminearum

نویسندگان

  • Tomoya Asano
  • Akihiro Miwa
  • Kazuyuki Maeda
  • Makoto Kimura
  • Takumi Nishiuchi
چکیده

Plants possess active defense systems and can protect themselves from pathogenic invasion by secretion of a variety of small antimicrobial or antifungal proteins such as thionins. The antibacterial and antifungal properties of thionins are derived from their ability to induce open pore formation on cell membranes of phytopathogens, resulting in release of potassium and calcium ions from the cell. Wheat thionin also accumulates in the cell walls of Fusarium-inoculated plants, suggesting that it may have a role in blocking pathogen infection at the plant cell walls. Here we developed an anti-thionin 2.4 (Thi2.4) antibody and used it to show that Thi2.4 is localized in the cell walls of Arabidopsis and cell membranes of F. graminearum, when flowers are inoculated with F. graminearum. The Thi2.4 protein had an antifungal effect on F. graminearum. Next, we purified the Thi2.4 protein, conjugated it with glutathione-S-transferase (GST) and coupled the proteins to an NHS-activated column. Total protein from F. graminearum was applied to GST-Thi2.4 or Thi2.4-binding columns, and the fungal fruit body lectin (FFBL) of F. graminearum was identified as a Thi2.4-interacting protein. This interaction was confirmed by a yeast two-hybrid analysis. To investigate the biological function of FFBL, we infiltrated the lectin into Arabidopsis leaves and observed that it induced cell death in the leaves. Application of FFBL at the same time as inoculation with F. graminearum significantly enhanced the virulence of the pathogen. By contrast, FFBL-induced host cell death was effectively suppressed in transgenic plants that overexpressed Thi2.4. We found that a 15 kD Thi2.4 protein was specifically expressed in flowers and flower buds and suggest that it acts not only as an antifungal peptide, but also as a suppressor of the FFBL toxicity. Secreted thionin proteins are involved in this dual defense mechanism against pathogen invasion at the plant-pathogen interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis

The fungus Fusarium graminearum forms an intimate association with the host species wheat whilst infecting the floral tissues at anthesis. During the prolonged latent period of infection, extracellular communication between live pathogen and host cells must occur, implying a role for secreted fungal proteins. The wheat cells in contact with fungal hyphae subsequently die and intracellular hypha...

متن کامل

A jacalin-related lectin-like gene in wheat is a component of the plant defence system

Jacalin-related lectins (JRLs) are a subgroup of proteins with one or more jacalin-like lectin domains. Although JRLs are often associated with biotic or abiotic stimuli, their biological functions in plants, as well as their relationships to plant disease resistance, are poorly understood. A mannose-specific JRL (mJRL)-like gene (TaJRLL1) that is mainly expressed in stem and spike and encodes ...

متن کامل

Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum

Curcuma longa possesses powerful antifungal activity, as demonstrated in many studies. In this study, the antifungal spectrum of Curcuma longa alcohol extract was determined, and the resulting EC50 values (mg/mL) of its extract on eleven fungi, including Fusarium graminearum, Fusarium chlamydosporum, Alternaria alternate, Fusarium tricinctum, Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium...

متن کامل

Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum.

Thionins are antimicrobial proteins that are thought to be involved in plant defense. Concordant with this view, we have recently shown that the Arabidopsis thionin Thi2.1 gene is inducible by phytopathogenic fungi. Here, we demonstrate that constitutive overexpression of this thionin enhances the resistance of the susceptible ecotype Columbia (Col-2) against attack by Fusarium oxysporum f sp m...

متن کامل

Overexpression of chimeric chitinase42 enhanced antifungal activity of Trichoderma harzianum against Fusarium graminearum

Evidence for the role of chitinases in biocontrol by Trichoderma species has been well documented.Chit42 lacks a chitin–binding domain (ChBD) which is involved in its binding activity to insoluble chitin. The objective of the present study was to enhance antifungal activity of T. harzianum by overexpression of wild type and hybrid forms of Chit42 containing chitin binding domain. To produce chi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013