Dominant-negative Hsp90 reduces VEGF-stimulated nitric oxide release and migration in endothelial cells.

نویسندگان

  • Robert Q Miao
  • Jason Fontana
  • David Fulton
  • Michelle I Lin
  • Kenneth D Harrison
  • William C Sessa
چکیده

OBJECTIVE Heat-shock protein 90 (Hsp90) coordinates the regulation of diverse signaling proteins. We try to develop a new tool to explore the regulatory functions of Hsp90 in endothelial cells (ECs) instead of the existing chemical approaches. METHODS AND RESULTS We designed a dominant-negative Hsp90 construct by site-direct mutagenesis of residue Asp-88 to Asn (D88N-Hsp90) based on the structure of the ATP/ADP-binding site. Recombinant wild-type Hsp90 protein binds ATP-Sepharose beads in manner inhibited by ATP or 17-AAG, a specific inhibitor for Hsp90, however the binding activity of D88N-Hsp90 was markedly reduced and the inhibitory effects of ATP or 17-AAG were negligible. The dimerization between endogenous Hsp90alpha and exogenous HA-Hsp90beta was confirmed by immunoprecipitation, however the association between eNOS and D88N-Hsp90 was less than WT-Hsp90. Furthermore, adenoviral transduction of bovine aortic ECs with D88N-Hsp90 suppressed VEGF-induced phosphorylation of Akt, eNOS, and NO release and the inhibitory effect was blocked by okadaic acid. Moreover, D88N-Hsp90 abolished VEGF-stimulated Rac activation and suppressed VEGF-induced stress fiber formation. Transduction with D88N-Hsp90 decreased growth medium mediated migration of wild-type ECs, but not Akt1(-/-) ECs suggesting that Akt is key target of Hsp90. CONCLUSIONS Our data demonstrate that dominant-negative Hsp90 modulates endothelial cell mobility mainly through PP2A-mediated dephosphorylation of Akt and Rac activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of the cochaperone AHA1 regulates heat-shock protein 90 and endothelial NO synthase activation by vascular endothelial growth factor.

OBJECTIVE Vascular endothelial growth factor (VEGF) signaling to endothelial NO synthase (eNOS) plays a central role in angiogenesis. In endothelial cells (ECs), heat-shock protein 90 (Hsp90) is also a regulator of eNOS activity. Our study is designed to determine whether modulation of the activator of Hsp90 ATPase 1 (AHA1) regulates the function of Hsp90 in ECs. METHODS AND RESULTS We show t...

متن کامل

Taxotere-induced inhibition of human endothelial cell migration is a result of heat shock protein 90 degradation.

In addition to effects on tumor cell proliferation and apoptosis, microtubule-binding agents are potent inhibitors of angiogenesis. The cancer chemotherapeutic drug Taxotere (docetaxel) inhibited vascular endothelial growth factor (VEGF)-induced human umbilical vein endothelial cell (HUVEC) migration in vitro at concentrations substantially lower than required to cause cell cycle arrest or apop...

متن کامل

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Angiostatin: a negative regulator of endothelial-dependent vasodilation.

BACKGROUND Angiostatin is known to inhibit certain aspects of endothelial function, eg, angiogenesis. Here we investigated the effects of angiostatin on another aspect of endothelial function, vasodilation, and examined mechanisms of inhibition--namely, association of heat-shock protein 90 (hsp90) with endothelial nitric oxide synthase (eNOS) and endothelial generation of nitric oxide (*NO) and...

متن کامل

Vascular endothelial growth factor-stimulated actin reorganization and migration of endothelial cells is regulated via the serine/threonine kinase Akt.

Vascular endothelial growth factor (VEGF) induces endothelial cell proliferation, migration, and actin reorganization, all necessary components of an angiogenic response. However, the distinct signal transduction mechanisms leading to each angiogenic phenotype are not known. In this study, we examined the ability of VEGF to stimulate cell migration and actin rearrangement in microvascular endot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 28 1  شماره 

صفحات  -

تاریخ انتشار 2008