Clique-Width for Graph Classes Closed under Complementation

نویسندگان

  • Alexandre Blanché
  • Konrad K. Dabrowski
  • Matthew Johnson
  • Vadim V. Lozin
  • Daniël Paulusma
  • Viktor Zamaraev
چکیده

Clique-width is an important graph parameter due to its algorithmic and structural properties. A graph class is hereditary if it can be characterized by a (not necessarily finite) set H of forbidden induced subgraphs. We initiate a systematic study into the boundedness of clique-width of hereditary graph classes closed under complementation. First, we extend the known classification for the |H| = 1 case by classifying the boundedness of clique-width for every set H of self-complementary graphs. We then completely settle the |H| = 2 case. In particular, we determine one new class of (H,H)-free graphs of bounded clique-width (as a side effect, this leaves only six classes of (H1,H2)free graphs, for which it is not known whether their clique-width is bounded). Once we have obtained the classification of the |H| = 2 case, we research the effect of forbidding self-complementary graphs on the boundedness of cliquewidth. Surprisingly, we show that for a set F of self-complementary graphs on at least five vertices, the classification of the boundedness of clique-width for ({H,H}∪F)-free graphs coincides with the one for the |H| = 2 case if and only if F does not include the bull (the only non-empty self-complementary graphs on fewer than five vertices are P1 and P4, and P4-free graphs have clique-width at most 2). Finally, we discuss the consequences of our results for Colouring and Graph Isomorphism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely many minimal classes of graphs of unbounded clique-width

The celebrated theorem of Robertson and Seymour states that in the family of minor-closed graph classes, there is a unique minimal class of graphs of unbounded tree-width, namely, the class of planar graphs. In the case of tree-width, the restriction to minor-closed classes is justified by the fact that the tree-width of a graph is never smaller than the tree-width of any of its minors. This, h...

متن کامل

Colouring on Hereditary Graph Classes Closed under Complementation

A graph is (H1,H2)-free for a pair of graphsH1, H2 if it contains no induced subgraph isomorphic toH1 orH2. In 2001, Král’, Kratochvíl, Tuza, and Woeginger initiated a study into the complexity of Colouring for (H1,H2)free graphs. Since then, others have tried to complete their study, but many cases remain open. We focus on those (H1,H2)-free graphs where H2 is H1, the complement of H1. As thes...

متن کامل

Tree-width and the monadic quantifier hierarchy

It is well known that on classes of graphs of bounded tree-width, every monadic second-order property is decidable in polynomial time. The converse is not true without further assumptions. It follows from the work of Robertson and Seymour, that if a class of graphs K has unbounded tree-width and is closed under minors, then K contains all planar graphs. But on planar graphs, three-colorability ...

متن کامل

Graph classes with and without powers of bounded clique-width

Clique-width is a graph parameter with many algorithmic applications. For a positive integer k, the k-th power of a graph G is the graph with the same vertex set as G, in which two distinct vertices are adjacent if and only if they are at distance at most k in G. Many graph algorithmic problems can be expressed in terms of graph powers. We initiate the study of graph classes of power-bounded cl...

متن کامل

Hereditary Graph Classes: When the Complexities of Colouring and Clique Cover Coincide⋆

A graph is (H1,H2)-free for a pair of graphsH1, H2 if it contains no induced subgraph isomorphic toH1 orH2. In 2001, Král’, Kratochvíl, Tuza, and Woeginger initiated a study into the complexity of Colouring for (H1,H2)free graphs. Since then, others have tried to complete their study, but many cases remain open. We focus on those (H1,H2)-free graphs where H2 is H1, the complement of H1. As thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017