Ubiquitin-Like Protein SAMP1 and JAMM/MPN+ Metalloprotease HvJAMM1 Constitute a System for Reversible Regulation of Metabolic Enzyme Activity in Archaea

نویسندگان

  • Shiyun Cao
  • Nathaniel Hepowit
  • Julie A. Maupin-Furlow
  • Annalisa Pastore
چکیده

Ubiquitin/ubiquitin-like (Ub/Ubl) proteins are involved in diverse cellular processes by their covalent linkage to protein substrates. Here, we provide evidence for a post-translational modification system that regulates enzyme activity which is composed of an archaeal Ubl protein (SAMP1) and a JAMM/MPN+ metalloprotease (HvJAMM1). Molybdopterin (MPT) synthase activity was found to be inhibited by covalent linkage of SAMP1 to the large subunit (MoaE) of MPT synthase. HvJAMM1 was shown to cleave the covalently linked inactive form of SAMP1-MoaE to the free functional individual SAMP1 and MoaE subunits of MPT synthase, suggesting reactivation of MPT synthase by this metalloprotease. Overall, this study provides new insight into the broad idea that Ub/Ubl modification is a post-translational process that can directly and reversibly regulate the activity of metabolic enzymes. In particular, we show that Ub/Ubl linkages on the active site residues of an enzyme (MPT synthase) can inhibit its catalytic activity and that the enzyme can be reactivated through cleavage by a JAMM/MPN+ metalloprotease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea

UNLABELLED The molecular mechanisms of targeted proteolysis in archaea are poorly understood, yet they may have deep evolutionary roots shared with the ubiquitin-proteasome system of eukaryotic cells. Here, we demonstrate in archaea that TBP2, a TATA-binding protein (TBP) modified by ubiquitin-like isopeptide bonds, is phosphorylated and targeted for degradation by proteasomes. Rapid turnover o...

متن کامل

E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea.

Based on our recent work with Haloferax volcanii, ubiquitin-like (Ubl) proteins (SAMP1 and SAMP2) are known to be covalently attached to proteins in archaea. Here, we investigated the enzymes required for the formation of these Ubl-protein conjugates (SAMPylation) and whether this system is linked to sulfur transfer. Markerless in-frame deletions were generated in H. volcanii target genes. The ...

متن کامل

Crystal structure of the ubiquitin-like small archaeal modifier protein 2 from Haloferax volcanii.

The discovery of ubiquitin-like small archaeal modifier protein 2 (SAMP2) that forms covalent polymeric chains in Haloferax volcanii has generated tremendous interest in the function and regulation of this protein. At present, it remains unclear whether the Hfx. volcanii modifier protein SAMP1 has such polyubiquitinating-like activity. Although SAMP1 and SAMP2 use the same conjugation machinery...

متن کامل

JAMM: A Metalloprotease-Like Zinc Site in the Proteasome and Signalosome

The JAMM (JAB1/MPN/Mov34 metalloenzyme) motif in Rpn11 and Csn5 underlies isopeptidase activities intrinsic to the proteasome and signalosome, respectively. We show here that the archaebacterial protein AfJAMM possesses the key features of a zinc metalloprotease, yet with a distinct fold. The histidine and aspartic acid of the conserved EX(n)HS/THX(7)SXXD motif coordinate a zinc, whereas the gl...

متن کامل

AMSH is an endosome-associated ubiquitin isopeptidase

The JAMM (JAB1/MPN/Mov34 metalloenzyme) motif has been proposed to provide the active site for isopeptidase activity associated with the Rpn11/POH1 subunit of the 19S-proteasome and the Csn5-subunit of the signalosome. We have looked for similar activity in associated molecule with the SH3 domain of STAM (AMSH), a JAMM domain-containing protein that associates with the SH3-domain of STAM, a pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015