nodD2 of Rhizobium sp. NGR234 is involved in the repression of the nodABC operon.

نویسندگان

  • R Fellay
  • M Hanin
  • G Montorzi
  • J Frey
  • C Freiberg
  • W Golinowski
  • C Staehelin
  • W J Broughton
  • S Jabbouri
چکیده

Transcriptional regulators of the lysR family largely control the expression of bacterial symbiotic genes. Rhizobium sp. NGR234 contains at least four members of this family: two resemble nodD, while two others are more closely related to syrM. Part of the extremely broad host range of NGR234 can be attributed to nodD1, although the second gene shares a high degree of DNA sequence homology with nodD2 of R. fredii USDA191. A nodD2 mutant of NGR234 was constructed by insertional mutagenesis. This mutant (NGR omega nodD2) was deficient in nitrogen fixation on Vigna unguiculata and induced pseudonodules on Tephrosia vogelii. Several other host plants were tested, but no correlation could be drawn between the phenotype and nodule morphology. Moreover, nodD2 has a negative effect on the production of Nod factors: mutation of this gene results in a fivefold increase in Nod factor production. Surprisingly, while the structure of Nod factors from free-living cultures of NGR omega nodD2 remained unchanged, those from V. unguiculata nodules induced by the same strain are non-fucosylated and have a lower degree of oligomerization. In other words, developmental regulation of Nod factor production is also abolished in this mutant. Competitive RNA hybridizations, gene fusions and mobility shift assays confirmed that nodD2 downregulates expression of the nodABC operon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rhizobium meliloti nodD genes mediate host-specific activation of nodABC.

To differentiate among the roles of the three nodD genes of Rhizobium meliloti 1021, we studied the activation of a nodC-lacZ fusion by each of the three nodD genes in response to root exudates from several R. meliloti host plants and in response to the flavone luteolin. We found (i) that the nodD1 and nodD2 products (NodD1 and NodD2) responded differently to root exudates from a variety of hos...

متن کامل

Functional and evolutionary relatedness of genes for exopolysaccharide synthesis in Rhizobium meliloti and Rhizobium sp. strain NGR234.

Rhizobium meliloti SU47 and Rhizobium sp. strain NGR234 produce distinct exopolysaccharides that have some similarities in structure. R. meliloti has a narrow host range, whereas Rhizobium strain NGR234 has a very broad host range. In cross-species complementation and hybridization experiments, we found that several of the genes required for the production of the two polysaccharides were functi...

متن کامل

Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean muta...

متن کامل

Characterization of NopP, a type III secreted effector of Rhizobium sp. strain NGR234.

The type three secretion system (TTSS) encoded by pNGR234a, the symbiotic plasmid of Rhizobium sp. strain NGR234, is responsible for the flavonoid- and NodD1-dependent secretion of nodulation outer proteins (Nops). Abolition of secretion of all or specific Nops significantly alters the nodulation ability of NGR234 on many of its hosts. In the closely related strain Rhizobium fredii USDA257, ina...

متن کامل

Protein-protein interactions within type III secretion system-dependent pili of Rhizobium sp. strain NGR234.

Pili synthesized by the type III secretion system of Rhizobium species strain NGR234 are essential for protein secretion and thus for efficient symbiosis with many legumes. Isolation and partial purification of these pili showed that they are composed of at least three proteins, NopA, NopB, and NopX. Using biochemical assays, we show here that these proteins interact directly with one another.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 1998