Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter

نویسنده

  • A. H. ELSheikh
چکیده

A new parameter estimation algorithm based on ensemble Kalman filter (EnKF) is developed. The developed algorithm combined with the proposed problem parametrization offers an efficient parameter estimation method that converges using very small ensembles. The inverse problem is formulated as a sequential data integration problem. Gaussian Process Regression (GRP) is used to integrate the prior knowledge (static data). The search space is further parameterized using Karhunen-Loève expansion to build a set of basis functions that spans the search space. Optimal weights of the reduced basis functions are estimated by an iterative regularized ensemble Kalman filter algorithm. The filter is converted to an optimization algorithm by using a pseudo time-stepping technique such that the model output matches the time dependent data. The EnKF Kalman gain matrix is regularized using truncated SVD to filter out noisy correlations. Numerical results show that the proposed algorithm is a promising approach for parameter estimation of subsurface flow models. A.H. Elsheikh Department of Earth Science and Engineering, Imperial College London, E-mail: [email protected] Current address: Center for Subsurface Modeling (CSM), Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX, USA E-mail: [email protected] C.C. Pain · F. Fang · J.L.M.A. Gomes Department of Earth Science and Engineering, Imperial College London, SW7 2BP, UK I.M. Navon Department of Scientific Computing, Florida State University, Tallahassee, FL, 32306-4120, USA

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint state and parameter estimation with an iterative ensemble Kalman smoother

Both ensemble filtering and variational data assimilation methods have proven useful in the joint estimation of state variables and parameters of geophysical models. Yet, their respective benefits and drawbacks in this task are distinct. An ensemble variational method, known as the iterative ensemble Kalman smoother (IEnKS) has recently been introduced. It is based on an adjoint model-free vari...

متن کامل

Sequential data assimilation with multiple nonlinear models and applications to subsurface flow

Complex systems are often described with competing models. Such divergence of interpretation on the system may stem from model fidelity, mathematical simplicity, and more generally, our limited knowledge of the underlying processes. Meanwhile, available but limited observations of system state could further complicates one’s prediction choices. Over the years, data assimilation techniques, such...

متن کامل

Stator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter

This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...

متن کامل

Data Assimilation in Structural Dynamics: Extended-, Ensemble Kalman and Particle Filters

Combined state and parameter estimation of dynamical systems plays a crucial role in extracting system response from noisy measurements. A wide variety of methods have been developed to deal with the joint state-parameter estimation of nonlinear dynamical systems. The Extended Kalman Filter method is a popular approach for the joint systemparameter estimation of nonlinear systems. This method c...

متن کامل

Identification of Geologic Fault Network Geometry by Using a Grid-Based Ensemble Kalman Filter

Discrete geologic features such as faults and highly permeable embedded channels can significantly affect subsurface flow and transport characteristics. Therefore, they must be properly identified, parameterized, and represented in subsurface simulation models. In this work, we use an improved ensemble Kalman filter (EnKF) for history-matching fault network geometry from production data. EnKF i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012