A Vertex-Centered Discontinuous Galerkin Method for Flow Problems
نویسندگان
چکیده
The understanding of flow problems, and finding their solution, has been important for most of human history, from the design of aqueducts to boats and airplanes. The use of physical miniature models and wind tunnels were, and still are, useful tools for design, but with the development of computers, an increasingly large part of the design process is assisted by computational fluid dynamics (CFD). Many industrial CFD codes have their origins in the 1980s and 1990s, when the low order finite volume method (FVM) was prevalent. Discontinuous Galerkin methods (DGM) have, since the turn of the century, been seen as the successor of these methods, since it is potentially of arbitrarily high order. In its lowest order form DGM is equivalent to FVM. However, many existing codes are not compatible with standard DGM and would need a complete rewrite to obtain the advantages of the higher order. This thesis shows how to extend existing vertex-centered and edge-based FVM codes to higher order, using a special kind of DGM discretization, which is di↵erent from the standard cellcentered type. Two model problems are examined to show the necessary data structures that need to be constructed, the order of accuracy for the method, and the use of an hp-adaptation scheme to resolve a developing shock. Then the method is further developed to solve the steady Euler equations, within the existing industrial Edge code, using acceleration techniques such as local time stepping and multigrid. With the ever increasing need for more e cient and accurate solvers and algorithms in CFD, the modified DGM presented in this thesis could be used to help and accelerate the adoption of high order methods in industry. i
منابع مشابه
A discontinuous Galerkin extension of the vertex-centered edge-based finite volume method
The finite volume (FV) method is the dominating discretization technique for computational fluid dynamics (CFD), particularly in the case of compressible fluids. The discontinuous Galerkin (DG) method has emerged as a promising highaccuracy alternative. The standardDGmethod reduces to a cell-centered FVmethod at lowest order. However, many of today’s CFD codes use a vertex-centered FV method in...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملOn the coupling of finite volume and discontinuous Galerkin method for elliptic problems
The coupling of cell-centered finite volume method with primal discontinuous Galerkin method is introduced in this paper for elliptic problems. Convergence of the method with respect to the mesh size is proved. Numerical examples confirm the theoretical rates of convergence. Advantages of the coupled scheme are shown for problems with discontinuous coefficients or anisotropic diffusion matrix.
متن کاملLocal Mass-Corrections for Continuous Pressure Approximations of Incompressible Flow
In this work, we discuss a family of finite element discretizations for the incompressible Stokes problem using continuous pressure approximations on simplicial meshes. We show that after a simple and cheap correction, the mass-fluxes obtained by the considered schemes preserve local conservation on dual cells without reducing the convergence order. This allows the direct coupling to vertex-cen...
متن کاملOn Discontinuous Galerkin Methods for Nonlinear Convection-diffusion Problems and Compressible Flow
The paper is concerned with the discontinuous Galerkin finite element method for the numerical solution of nonlinear conservation laws and nonlinear convection-diffusion problems with emphasis on applications to the simulation of compressible flows. We discuss two versions of this method: (a) Finite volume discontinuous Galerkin method, which is a generalization of the combined finite volume—fi...
متن کامل