IG-Based Feature Extraction and Compensation for Emotion Recognition from Speech
نویسندگان
چکیده
This paper presents an approach to emotion recognition from speech signals. In this approach, the intonation groups (IGs) of the input speech signals are firstly extracted. The speech features in each selected intonation group are then extracted. With the assumption of linear mapping between feature spaces in different emotional states, a feature compensation approach is proposed to characterize the feature space with better discriminability among emotional states. The compensation vector with respect to each emotional state is estimated using the Minimum Classification Error (MCE) algorithm. The IGbased feature vectors compensated by the compensation vectors are used to train the Gaussian Mixture Models (GMMs) for each emotional state. The emotional state with the GMM having the maximal likelihood ratio is determined as the final output. The experimental result shows that IG-based feature extraction and compensation can obtain encouraging performance for emotion recognition.
منابع مشابه
Emotion Recognition Using IG-based Feature Compensation and Continuous Support Vector Machines
This paper presents an approach to feature compensation for emotion recognition from speech signals. In this approach, the intonation groups (IGs) of the input speech signals are firstly extracted. The speech features in each selected intonation group are then extracted. With the assumption of linear mapping between feature spaces in different emotional states, a feature compensation approach i...
متن کاملEmotion Recognition from Speech Using IG-Based Feature Compensation
This paper presents an approach to feature compensation for emotion recognition from speech signals. In this approach, the intonation groups (IGs) of the input speech signals are extracted first. The speech features in each selected intonation group are then extracted. With the assumption of linear mapping between feature spaces in different emotional states, a feature compensation approach is ...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005