Homocysteine promotes human endothelial cell dysfunction via site-specific epigenetic regulation of p66shc.

نویسندگان

  • Cuk-Seong Kim
  • Young-Rae Kim
  • Asma Naqvi
  • Santosh Kumar
  • Timothy A Hoffman
  • Saet-Byel Jung
  • Ajay Kumar
  • Byeong-Hwa Jeon
  • Dennis M McNamara
  • Kaikobad Irani
چکیده

AIMS Hyperhomocysteinaemia is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial dysfunction. Homocysteine modulates cellular methylation reactions. P66shc is a protein that promotes oxidative stress whose expression is governed by promoter methylation. We asked if homocysteine induces endothelial p66shc expression via hypomethylation of CpG dinucleotides in the p66shc promoter, and whether p66shc mediates homocysteine-stimulated endothelial cell dysfunction. METHODS AND RESULTS Homocysteine stimulates p66shc transcription in human endothelial cells and hypomethylates specific CpG dinucleotides in the human p66shc promoter. Knockdown of p66shc inhibits the increase in reactive oxygen species, and decrease in nitric oxide, elicited by homocysteine in endothelial cells and prevents homocysteine-induced up-regulation of endothelial intercellular adhesion molecule-1. In addition, knockdown of p66shc mitigates homocysteine-induced adhesion of monocytes to endothelial cells. Inhibition of DNA methyltransferase activity or knockdown of DNA methyltransferase 3b abrogates homocysteine-induced up-regulation of p66shc. Comparison of plasma homocysteine in humans with coronary artery disease shows a significant difference between those with highest and lowest p66shc promoter CpG methylation in peripheral blood leucocytes. CONCLUSION Homocysteine up-regulates human p66shc expression via hypomethylation of specific CpG dinucleotides in the p66shc promoter, and this mechanism is important in homocysteine-induced endothelial cell dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic upregulation of p66shc mediates low-density lipoprotein cholesterol-induced endothelial cell dysfunction.

Hypercholesterolemia characterized by elevation of low-density lipoprotein (LDL) cholesterol is a major risk factor for atherosclerotic vascular disease. p66shc mediates hypercholesterolemia-induced endothelial dysfunction and atheromatous plaque formation. We asked if LDL upregulates endothelial p66shc via changes in the epigenome and examined the role of p66shc in LDL-stimulated endothelial c...

متن کامل

CRIF1 Deficiency Induces p66shc-Mediated Oxidative Stress and Endothelial Activation

Mitochondrial dysfunction has been implicated in the pathophysiology of various cardiovascular diseases. CRIF1 is a protein present in the mitochondria associated with large mitoribosomal subunits, and CRIF1 knockdown induces mitochondrial dysfunction and promotes ROS production. p66shc is a redox enzyme implicated in mitochondrial ROS generation and translation of oxidative signals and, theref...

متن کامل

P66Shc-Induced MicroRNA-34a Causes Diabetic Endothelial Dysfunction by Downregulating Sirtuin1.

OBJECTIVE Diabetes mellitus causes vascular endothelial dysfunction and alters vascular microRNA expression. We investigated whether endothelial microRNA-34a (miR-34a) leads to diabetic vascular dysfunction by targeting endothelial sirtuin1 (Sirt1) and asked whether the oxidative stress protein p66Shc governs miR-34a expression in the diabetic endothelium. APPROACH AND RESULTS MiR-34a is upre...

متن کامل

Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction.

RATIONALE Inactivation of the p66Shc adaptor protein confers resistance to oxidative stress and protects mice from aging-associated vascular diseases. However, there is limited information about the negative regulating mechanisms of p66Shc expression in the vascular system. OBJECTIVE In this study, we investigated the role of SIRT1, a class III histone deacetylase, in the regulation of p66Shc...

متن کامل

Dual Role of Endothelial Nitric Oxide Synthase in Oxidized LDL-Induced, p66Shc-Mediated Oxidative Stress in Cultured Human Endothelial Cells

BACKGROUND The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 92 3  شماره 

صفحات  -

تاریخ انتشار 2011