Printable Nanoscopic Metamaterial Absorbers and Images with Diffraction-Limited Resolution.

نویسندگان

  • Patrizia Richner
  • Hadi Eghlidi
  • Stephan J P Kress
  • Martin Schmid
  • David J Norris
  • Dimos Poulikakos
چکیده

The fabrication of functional metamaterials with extreme feature resolution finds a host of applications such as the broad area of surface/light interaction. Nonplanar features of such structures can significantly enhance their performance and tunability, but their facile generation remains a challenge. Here, we show that carefully designed out-of-plane nanopillars made of metal-dielectric composites integrated in a metal-dielectric-nanocomposite configuration can absorb broadband light very effectively. We further demonstrate that electrohydrodynamic printing in a rapid nanodripping mode is able to generate precise out-of-plane forests of such composite nanopillars with deposition resolutions at the diffraction limit on flat and nonflat substrates. The nanocomposite nature of the printed material allows the fine-tuning of the overall visible light absorption from complete absorption to complete reflection by simply tuning the pillar height. Almost perfect absorption (∼95%) over the entire visible spectrum is achieved by a nanopillar forest covering only 6% of the printed area. Adjusting the height of individual pillar groups by design, we demonstrate on-demand control of the gray scale of a micrograph with a spatial resolution of 400 nm. These results constitute a significant step forward in ultrahigh resolution facile fabrication of out-of-plane nanostructures, important to a broad palette of light design applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies

In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...

متن کامل

Improving Super-resolution Techniques via Employing Blurriness Information of the Image

Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...

متن کامل

Development of optical hyperlens for imaging below the diffraction limit.

We report here the design, fabrication and characterization of optical hyperlens that can image sub-diffraction-limited objects in the far field. The hyperlens is based on an artificial anisotropic metamaterial with carefully designed hyperbolic dispersion. We successfully designed and fabricated such a metamaterial hyperlens composed of curved silver/alumina multilayers. Experimental results d...

متن کامل

Two-dimensional imaging by far-field superlens at visible wavelengths.

We report that two-dimensional (2D) sub-diffraction-limited images can be theoretically reconstructed by a new metamaterial far-field superlens. The metamaterial far-field superlens, composed of a metal-dielectric multilayer and a one-dimensional (1D) subwavelength grating, can work over a broad range of visible wavelengths intrinsically. The imaging principle and the reconstruction process are...

متن کامل

Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics

Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorban...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 8 18  شماره 

صفحات  -

تاریخ انتشار 2016