Acoustic wave guides as infinite-dimensional dynamical systems

نویسندگان

  • Atte Aalto
  • Teemu Lukkari
  • Jarmo Malinen
چکیده

We prove the unique solvability, passivity/conservativity and some regularity results of two mathematical models for acoustic wave propagation in curved, variable diameter tubular structures of finite length. The first of the models is the generalised Webster’s model that includes dissipation and curvature of the 1D waveguide. The second model is the scattering passive, boundary controlled wave equation on 3D waveguides. The two models are treated in an unified fashion so that the results on the wave equation reduce to the corresponding results of approximating Webster’s model at the limit of vanishing waveguide intersection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

بررسی کوپلینگ پیزوالکتریکی و آنیزتروپی بر انتشار امواج صوتی در بلوره صوتی لیتیوم نیوباته

The acoustic wave velocity depends on elasticity and density at most materials, but because of anisotropy and especially piezoelectric coupling effect, the acoustic wave propagation at piezoelectric based crystalloacoustic materials, is an applied and challenging problem. In this paper, using modified Christoffel's equation based on group velocity concept, the effect of anisotropy and piezoelec...

متن کامل

Berry phase for a particle in an infinite spherical potential well with moving wall

In this paper we calculate the Berry phase for a wave function of a particle in an infinite spherical potential well with adiabatically varying. In order to do this, we need the solutions of the corresponding Schrödinger equation with a time dependent Hamiltonian. Here, we obtain these solutions for the first time. In addition, we calculate the Berry phase in one dimensional case for an infinit...

متن کامل

Lattice differential equations embedded into reaction-diffusion systems

We show that lattice dynamical systems naturally arise on infinite-dimensional invariant manifolds of reaction-diffusion equations with spatially periodic diffusive fluxes. The result connects wave pinning phenomena in lattice differential equations and in reaction-diffusion equations in inhomogeneous media. The proof is based on a careful singular perturbation analysis of the linear part, wher...

متن کامل

KAM theory for the reversible derivative wave equation

We prove the existence of Cantor families of small amplitude, analytic, quasi-periodic solutions of derivative wave equations, with zero Lyapunov exponents and whose linearized equation is reducible to constant coefficients. This result is derived by an abstract KAM theorem for infinite dimensional reversible dynamical systems. 2000AMS subject classification: 37K55, 35L05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012