Midair collisions enhance saltation.
نویسندگان
چکیده
Here we address the old question in aeolian particle transport about the role of midair collisions. We find that, surprisingly, these collisions do enhance the overall flux substantially. The effect depends strongly on restitution coefficient and wind speed. We can explain this observation as a consequence of a soft bed of grains which floats above the ground and reflects the highest flying particles. We make the unexpected observation that the flux is maximized at an intermediate restitution coefficient of about 0.7, which is comparable to values experimentally measured for collisions between sand grains.
منابع مشابه
Direct numerical simulations of aeolian sand ripples.
Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns...
متن کاملTCAS: A System for Preventing Midair Collisions
To reduce the possibility of midair collisions, the Federal Aviation Administration has developed the Traffic Alert and Collision Avoidance System, or TCAS. This airborne system senses the presence of nearby aircraft by interrogating the transponders carried by these aircraft. When TCAS senses that a nearby aircraft is a possible collision threat, TCAS issues a traffic advisory to the pilot, in...
متن کاملComputational Simulation of Aeolian Saltation
We reveal that the transition in the saturated flux for aeolian saltation is generically discontinuous by explicitly simulating particle motion in turbulent flow in two dimensions. The discontinuity is followed by a coexistence interval with two metastable solutions. We found also that the mere presence of mid-air collisions, surprisingly, enhances the saturated flux, which has a peak for an in...
متن کاملElectrostatics in wind-blown sand.
Wind-blown sand, or "saltation," is an important geological process, and the primary source of atmospheric mineral dust aerosols. Significant discrepancies exist between classical saltation theory and measurements. We show here that these discrepancies can be resolved by the inclusion of sand electrification in a physically based saltation model. Indeed, we find that electric forces enhance the...
متن کاملAeolian sand transport with collisional suspension
Aeolian transport is an important mechanism for the transport of sand on Earth and on Mars. Dust and sand storms are common occurrences on Mars and windblown sand is responsible for many of the observed surface features, such as dune fields. A better understanding of Aeolian transport could also lead to improvements in pneumatic conveying of materials to be mined for life support on the surface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 111 5 شماره
صفحات -
تاریخ انتشار 2013