Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice.
نویسندگان
چکیده
Over the past decade xenotransplantation systems have been used with increasing success to gain a better understanding of human cells that are able to initiate and maintain the hematopoietic system in vivo. The nonobese diabetic/severe combined immunodeficiency (SCID) mouse has been a particularly useful model. Human cells capable of hematopoietic repopulation in this mouse, termed SCID-repopulating cells, have been assumed to represent the most primitive elements of the hematopoietic system, responsible for long-term maintenance of hematopoiesis. However, we demonstrate that SCID-repopulating cells present in the CD34(+) cell fraction of cord blood can be segregated into subpopulations with distinct repopulation characteristics. CD34(+)/CD38(+) progenitors can repopulate recipients rapidly, but can only maintain the graft for 12 weeks or less and have no secondary repopulation potential. Conversely, the more primitive CD34(+)/CD38(-) subpopulation repopulates recipients more gradually, can maintain the graft for at least 20 weeks, and contains cells with serial repopulation potential throughout the engraftment period. Additionally, a much higher frequency of T cell precursors are found among SCID-repopulating cells in the CD34(+)/CD38(-) subpopulation. These findings demonstrate that cells with variable repopulation potential comprise the human CD34(+) population and that short- and long-term potential of human precursors can be evaluated in the mouse model.
منابع مشابه
Long-term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1.
The polycomb group (PcG) gene BMI1 has been identified as one of the key epigenetic regulators of cell fates during different stages of development in multiple murine tissues. In a clinically relevant model, we demonstrate that enforced expression of BMI1 in cord blood CD34(+) cells results in long-term maintenance and self-renewal of human hematopoietic stem and progenitor cells. Long-term cul...
متن کاملQuantity and quality of engrafting cells in cord blood and autologous mobilized peripheral blood.
Cord blood (CB) and autologous mobilized peripheral blood stem/progenitor cells (PBSC) are now used widely for clinical transplantation. We characterized the short-term (<8 weeks) and long-term (>8 weeks) engraftment in NOD/SCID mice resulting from transplanted CD34+ cells from these two sources. We also quantified the frequency of long-term engrafting cells, and the average proliferative capac...
متن کاملLentiviral gene transfer and ex vivo expansion of human primitive stem cells capable of primary, secondary, and tertiary multilineage repopulation in NOD/SCID mice
The ability of advanced-generation lentiviral vectors to transfer the green fluorescent protein (GFP) gene into human hematopoietic stem cells (HSCs) was studied in culture conditions that allowed expansion of transplantable human HSCs. Following 96 hours’ exposure to flt3/flk2 ligand (FL), thrombopoietin (TPO), stem cell factor (SCF), and interleukin-6 (IL-6) and overnight incubation with vect...
متن کاملSimilar repopulating capacity of mitotically active and resting umbilical cord blood CD34(+) cells in NOD/SCID mice.
It was hypothesized that during mammalian development, the extensive need for hematopoietic cells requires equal contribution to blood cell production from both quiescent and cycling hematopoietic stem cells (HSCs) while maintaining the stem cell pool. To investigate this hypothesis, the engraftment potential of umbilical cord blood (UCB) CD34(+) cells residing in either G(0) (G(0)CD34(+) cells...
متن کاملEfficient transduction of human hematopoietic repopulating cells generating stable engraftment of transgene-expressing cells in NOD/SCID mice.
In an attempt to develop efficient procedures of human hematopoietic gene therapy, retrovirally transduced CD34(+) cord blood cells were transplanted into NOD/SCID mice to evaluate the repopulating potential of transduced grafts. Samples were prestimulated on Retronectin-coated dishes and infected with gibbon ape leukemia virus (GALV)-pseudotyped FMEV vectors encoding the enhanced green fluores...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 1 شماره
صفحات -
تاریخ انتشار 2002