Lactate-Induced Release of GABA in the Ventromedial Hypothalamus Contributes to Counterregulatory Failure in Recurrent Hypoglycemia and Diabetes
نویسندگان
چکیده
Suppression of GABAergic neurotransmission in the ventromedial hypothalamus (VMH) is crucial for full activation of counterregulatory responses to hypoglycemia, and increased γ-aminobutyric acid (GABA) output contributes to counterregulatory failure in recurrently hypoglycemic (RH) and diabetic rats. The goal of this study was to establish whether lactate contributes to raising VMH GABA levels in these two conditions. We used microdialysis to deliver artificial extracellular fluid or L-lactate into the VMH and sample for GABA. We then microinjected a GABAA receptor antagonist, an inhibitor of lactate transport (4CIN), or an inhibitor of lactate dehydrogenase, oxamate (OX), into the VMH prior to inducing hypoglycemia. To assess whether lactate contributes to raising GABA in RH and diabetes, we injected 4CIN or OX into the VMH of RH and diabetic rats before inducing hypoglycemia. L-lactate raised VMH GABA levels and suppressed counterregulatory responses to hypoglycemia. While blocking GABAA receptors did not prevent the lactate-induced rise in GABA, inhibition of lactate transport or utilization did, despite the presence of lactate. All three treatments restored the counterregulatory responses, suggesting that lactate suppresses these responses by enhancing GABA release. Both RH and diabetic rats had higher baseline GABA levels and were unable to reduce GABA levels sufficiently to fully activate counterregulatory responses during hypoglycemia. 4CIN or OX lowered VMH GABA levels in both RH and diabetic rats and restored the counterregulatory responses. Lactate likely contributes to counterregulatory failure in RH and diabetes by increasing VMH GABA levels.
منابع مشابه
Increased GABAergic Output in the Ventromedial Hypothalamus Contributes to Impaired Hypoglycemic Counterregulation in Diabetic Rats
OBJECTIVE Impaired glucose counterregulation during hypoglycemia is well documented in patients with type 1 diabetes; however, the molecular mechanisms underlying this defect remain uncertain. We reported that the inhibitory neurotransmitter γ-aminobutyric acid (GABA), in a crucial glucose-sensing region within the brain, the ventromedial hypothalamus (VMH), plays an important role in modulatin...
متن کاملRole of Synaptic Plasticity and EphA5-EphrinA5 Interaction Within the Ventromedial Hypothalamus in Response to Recurrent Hypoglycemia
Hypoglycemia stimulates counterregulatory hormone release to restore euglycemia. This protective response is diminished by recurrent hypoglycemia, limiting the benefits of intensive insulin treatment in patients with diabetes. We previously reported that EphA5 receptor-ephrinA5 interactions within the ventromedial hypothalamus (VMH) influence counterregulatory hormone responses during acute hyp...
متن کاملATP-sensitive K(+) channels regulate the release of GABA in the ventromedial hypothalamus during hypoglycemia.
OBJECTIVE-To determine whether alterations in counterregulatory responses to hypoglycemia through the modulation of ATP-sensitive K(+) channels (K(ATP) channels) in the ventromedial hypothalamus (VMH) are mediated by changes in GABAergic inhibitory tone in the VMH, we examined whether opening and closing K(ATP) channels in the VMH alter local GABA levels and whether the effects of modulating K(...
متن کاملMetabolic pathways that mediate inhibition of hypothalamic neurons by glucose.
Neurons in the ventromedial hypothalamus mediate some counterregulatory responses to hypoglycemia and 2-deoxyglucose, but the mechanisms that mediate these responses to glucose are unclear. In the present study, ventromedial hypothalamus neurons were identified on the basis of their inhibition by the transition from 5 to 20 mmol/l glucose. Tolbutamide, which activates glucose-stimulated neurons...
متن کاملActivation of ATP-sensitive K+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats.
The mechanism(s) by which glucosensing neurons detect fluctuations in glucose remains largely unknown. In the pancreatic beta-cell, ATP-sensitive K+ channels (K ATP channels) play a key role in glucosensing by providing a link between neuronal metabolism and membrane potential. The present study was designed to determine in vivo whether the pharmacological opening of ventromedial hypothalamic K...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 62 شماره
صفحات -
تاریخ انتشار 2013