Gaussian Noise Sensitivity and BosonSampling

نویسندگان

  • Gil Kalai
  • Guy Kindler
چکیده

We study the sensitivity to noise of |permanent(X)|2 for random real and complex n×n Gaussian matrices X, and show that asymptotically the correlation between the noisy and noiseless outcomes tends to zero when the noise level is ω(1)/n. This suggests that, under certain reasonable noise models, the probability distributions produced by noisy BosonSampling are very sensitive to noise. We also show that when the amount of noise is constant the noisy value of |permanent(X)|2 can be approximated efficiently on a classical computer. These results seem to weaken the possibility of demonstrating quantum-speedup via BosonSampling without quantum fault-tolerance. ∗This work was carried out in part while the authors were visiting the Simons Institute for the Theory of Computing at UC Berkeley. †Einstein Institute of Mathematics, the Hebrew University of Jerusalem, and Department of Mathematics, Yale University. Supported by an ERC grant and by an NSF grant. ‡School of Computer Science and Engineering, the Hebrew University. Supported by an Israeli Science Fund grant and a Binational Science Fund grant no. 2008477.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BosonSampling with Lost Photons

BosonSampling is an intermediate model of quantum computation where linear-optical networks are used to solve sampling problems expected to be hard for classical computers. Since these devices are not expected to be universal for quantum computation, it remains an open question of whether any error-correction techniques can be applied to them, and thus it is important to investigate how robust ...

متن کامل

Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions

There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

A Comprehensive Performance Analysis of Direct Detection Receivers inWDMASystems

In this work the performance of a wavelength division multiple access (WDMA) system with direct detection receiver is investigated. For this purpose, the probability of error in a WDMA network with OOK modulation considering crosstalk, ISI, photo detector noise and thermal noise is calculated and the effect of each on system performance is investigated. The system performance in presence of PIN...

متن کامل

Adaptive Signal Detection in Auto-Regressive Interference with Gaussian Spectrum

A detector for the case of a radar target with known Doppler and unknown complex amplitude in complex Gaussian noise with unknown parameters has been derived. The detector assumes that the noise is an Auto-Regressive (AR) process with Gaussian autocorrelation function which is a suitable model for ground clutter in most scenarios involving airborne radars. The detector estimates the unknown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1409.3093  شماره 

صفحات  -

تاریخ انتشار 2014