Polyhedral results for the Cardinality Constrained Multi-cycle Problem (CCMcP) and the Cardinality Constrained Cycles and Chains Problem (CCCCP)

نویسنده

  • V. Mak-Hau
چکیده

In recent years, there has been studies on the cardinality constrained multi-cycle problems on directed graphs, some of which considered chains co-existing on the same digraph whilst others did not. These studies were inspired by the optimal matching of kidneys known as the Kidney Exchange Problem (KEP). In a KEP, a vertex on the digraph represents a donor-patient pair who are related, though the kidney of the donor is incompatible to the patient. When there are multiple such incompatible pairs in the kidney exchange pool, the kidney of the donor of one incompatible pair may in fact be compatible to the patient of another incompatible pair. If Donor A’s kidney is suitable for Patient B, and vice versa, then there will be arcs in both directions between Vertex A to Vertex B. Such exchanges form a 2-cycle. There may also be cycles involving 3 or more vertices. As all exchanges in a kidney exchange cycle must take place simultaneously, (otherwise a donor can drop out from the program once his/her partner has received a kidney from another donor), due to logistic and human resource reasons, only a limited number of kidney exchanges can occur simultaneously, hence the cardinality of these cycles are constrained. In recent years, kidney exchange programs around the world have altruistic donors in the pool. A sequence of exchanges that starts from an altruistic donor forms a chain instead of a cycle. We therefore have two underlying combinatorial optimization problems: Cardinality Constrained Multi-cycle Problem (CCMcP) and the Cardinality Constrained Cycles and Chains Problem (CCCCP). The objective of the KEP is either to maximize the number of kidney matches, or to maximize a certain weighted function of kidney matches. In a CCMcP, a vertex can be in at most one cycle whereas in a CCCCP, a vertex can be part of (but in no more than) a cycle or a chain. The cardinality of the cycles are constrained in all studies. The cardinality of the chains, however, are considered unconstrained in some studies, constrained but larger than that of cycles, or the same as that of cycles in others. Although the CCMcP has some similarities to the ATSPand VRPfamily of problems, there is a major difference: strong subtour elimination constraints are mostly invalid for the CCMcP, as we do allow smaller subtours as long as they do not exceed the size limit. The CCCCP has its distinctive feature that allows chains as well as cycles on the same directed graph. Hence, both the CCMcP and the CCCCP are interesting and challenging combinatorial optimization problems in their own rights. Most existing studies focused on solution methodologies, and as far as we aware, there is no polyhedral studies so far. In this paper, we will study the polyhedral structure of the natural arc-based integer programming models of the CCMcP and the CCCCP, both containing exponentially many constraints. We do so to pave the way for studying strong valid cuts we have found that can be applied in a Lagrangean relaxation-based branch-and-bound framework where at each node of the branch-and-bound tree, we may be able to obtain a relaxation that can be solved in polynomial time, with strong valid cuts dualized into the objective function and the dual multipliers optimised by subgradient optimisation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A polyhedral study of the cardinality constrained multi-cycle and multi-chain problem on directed graphs for kidney exchange optimization

The Cardinality Constrained Multi-cycle Problem (CCMcP) and the Cardinality Constrained Cycle and Chain Problem (CCCCP) are both combinatorial optimisation problems defined on directed graphs. They have attracted the attention of the combinatorial optimisation community due to the application in kidney exchange and barter exchange optimisation. Consider a digraph where each arc is associated wi...

متن کامل

Stock Portfolio-Optimization Model by Mean-Semi-Variance Approach Using of Firefly Algorithm and Imperialist Competitive Algorithm

Selecting approaches with appropriate accuracy and suitable speed for the purpose of making decision is one of the managers’ challenges. Also investing decision is one of the main decisions of managers and it can be referred to securities transaction in financial markets which is one of the investments approaches. When some assets and barriers of real world have been considered, optimization of...

متن کامل

A Robust Knapsack Based Constrained Portfolio Optimization

Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...

متن کامل

On cardinality constrained cycle and path polytopes

Given a directed graph D = (N, A) and a sequence of positive integers 1 ≤ c1 < c2 < · · · < cm ≤ |N |, we consider those path and cycle polytopes that are defined as the convex hulls of simple paths and cycles of D of cardinality cp for some p ∈ {1, . . . , m}, respectively. We present integer characterizations of these polytopes by facet defining linear inequalities for which the separation pr...

متن کامل

A Polyhedral Study of the Cardinality Constrained Knapsack Problem

A cardinality constrained knapsack problem is a continuous knapsack problem in which no more than a specified number of nonnegative variables are allowed to be positive. This structure occurs, for example, in areas as finance, location, and scheduling. Traditionally, cardinality constraints are modeled by introducing auxiliary 0-1 variables and additional constraints that relate the continuous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015