Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root.
نویسندگان
چکیده
During plant development, because no cell movement takes place, control of the timing and extent of cell division and coordination of the direction and extent of cell expansion are particularly important for growth and development. The plant hormone gibberellins (GAs) play key roles in the control of these developmental processes. However, little is known about the molecular components that integrate the generic GA signaling into a specific cell/tissue to coordinate cell division and cell expansion. Here we report that scarecrow-like 3 (SCL3), a GRAS protein, acts as a positive regulator to integrate and maintain a functional GA pathway by attenuating the DELLA repressors in the root endodermis. The tissue-specific maintenance of GA signaling in the root endodermis plays distinct roles along the longitudinal root axis. While in the elongation/differentiation zone (EDZ), the endodermis-confined GA pathway by SCL3 controls primarily coordination of root cell elongation; in the meristem zone (MZ) SCL3 in conjunction with the short-root/scarecrow (SHR/SCR) pathway controls GA-modulated ground tissue maturation. Our findings highlight the regulatory network of the GRAS transcription regulators (SCL3, DELLAs, and SHR/SCR) in the root endodermis, shedding light on how GA homeostasis is achieved and how the maintenance of GA signaling controls developmental processes in roots.
منابع مشابه
Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation
Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the...
متن کاملScarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis.
The diterpenoid phytohormone gibberellin (GA) controls diverse developmental processes throughout the plant life cycle. DELLA proteins are master growth repressors that function immediately downstream of the GA receptor to inhibit GA signaling. By doing so, DELLAs also play pivotal roles as integrators of internal developmental signals from multiple hormone pathways and external cues. DELLAs ar...
متن کاملA Structure for Plant-Specific Transcription Factors: The GRAS Domain Revealed.
The GRAS protein family is illustrious. The GRAS domain is plant specific, named for the first three proteins found to contain it: GIBBERELLIC ACID INSENSITIVE (GAI), REPRESSOR of GAI, and SCARECROW. In addition to these foundingmembers,which function in gibberellin signaling and root patterning, the GRAS family includes DELLA proteins—important in gibberellin, jasmonate, and light signaling—as...
متن کاملThe Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway.
The recessive rga mutation is able to partially suppress phenotypic defects of the Arabidopsis gibberellin (GA) biosynthetic mutant ga1-3. Defects in stem elongation, flowering time, and leaf abaxial trichome initiation are suppressed by rga. This indicates that RGA is a negative regulator of the GA signal transduction pathway. We have identified 10 additional alleles of rga from a fast-neutron...
متن کاملGibberellin Signaling: GRASs Growing Roots Dispatch
Gibberellins are a class of terpenoid molecules that can act as plant growth regulators. This class was discovered through the investigation of sick rice plants that were infested by the fungus Gibberella fujikuroi. In 1926, Eiichi Kurosawa determined that a substance, dubbed gibberellic acid, secreted by the fungus was causing the disease. Subsequently, it was realized that gibberellic acid is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 5 شماره
صفحات -
تاریخ انتشار 2011