White matter compartment models for in vivo diffusion MRI at 300mT/m

نویسندگان

  • Uran Ferizi
  • Torben Schneider
  • Thomas Witzel
  • Lawrence L. Wald
  • Hui Zhang
  • Claudia A. M. Wheeler-Kingshott
  • Daniel C. Alexander
چکیده

This paper compares a range of compartment models for diffusion MRI data on in vivo human acquisitions from a standard 60mT/m system (Philips 3T Achieva) and a unique 300mT/m system (Siemens Connectom). The key aim is to determine whether both systems support broadly the same models or whether the Connectom higher gradient system supports significantly more complex models. A single volunteer underwent 8h of acquisition on each system to provide uniquely wide and dense sampling of the available space of pulsed-gradient spin-echo (PGSE) measurements. We select a set of promising models from the wide set of possible three-compartment models for in vivo white matter (WM) that previous work and preliminary experiments suggest as strong candidates, but extend them to fit for compartmental T2 and diffusivity. We focus on the corpus callosum where the WM fibre architecture is simplest and compare their ability to explain the measured data, using Akaike's information criterion (AIC), and to predict unseen data, using cross-validation. We also compare the stability of parameter estimates in the presence of i) noise, using bootstrapping, and ii) spatial variation, using visual assessment and comparison with anatomical knowledge. Broadly similar models emerge from the AIC and cross-validation experiments in both data sets. Specifically, a three-compartment model consisting of either a Bingham distribution of sticks or a Cylinder for the intracellular compartment, an anisotropic diffusion tensor (DT) model for the extracellular compartment, as well as an isotropic CSF compartment, performs consistently well. However, various other models also perform well and no single model emerges as clear winner. The WM data (with virtually no CSF contamination) do not support compartmental T2 but partially support compartmental diffusivity. Evaluation of parameter stability favours simpler models than those identified by AIC or cross-validation. They suggest that the level of complexity in models underpinning currently popular microstructure imaging techniques such as NODDI, CHARMED, or ActiveAx, where the number of free parameters is about 4 or 5 rather than 10 or 11, may reflect the level of complexity achievable for a useful technique on current systems, although the 300mT/m data may support more complex models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ranking of diffusion MRI compartment models with in vivo human brain data

PURPOSE Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies on biophysically motivated mathematical models, relating microscopic tissue features to the magnetic resonance (MR) signal. This work aims to determine which compartment models of diffusion MRI are best at describing measurements from in ...

متن کامل

Design and Validation of Diffusion MRI Models of White Matter

Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmenta...

متن کامل

Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models

Brain white matter connections have become a focus of major interest with important maturational processes occurring in newborns. To study the complex microstructural developmental changes in-vivo, it is imperative that non-invasive neuroimaging approaches are developed for this age-group. Multi-b-value diffusion weighted imaging data were acquired in 13 newborns, and the biophysical compartmen...

متن کامل

Model Selection and Estimation of Multi-compartment Models in Diffusion MRI with a Rician Noise Model

Multi-compartment models in diffusion MRI (dMRI) are used to describe complex white matter fiber architecture of the brain. In this paper, we propose a novel multi-compartment estimation method based on the ball-and-stick model, which is composed of an isotropic diffusion compartment ("ball") as well as one or more perfectly linear diffusion compartments ("sticks"). To model the noise distribut...

متن کامل

Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison

This paper aims to identify the minimum requirements for an accurate model of the diffusion MR signal in white matter of the brain. We construct a taxonomy of multi-compartment models of white matter from combinations of simple models for the intra- and the extra-axonal spaces. We devise a new diffusion MRI protocol that provides measurements with a wide range of imaging parameters for diffusio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2015