cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells.
نویسندگان
چکیده
Guanosine-3',5'-cyclic monophosphate (cGMP)-dependent protein kinase (cGMP-PK) plays a central role in the mediation of the vasodilator response to nitric oxide (NO) and other nitrovasodilators. It is unclear whether cGMP-PK affects calcium-activated potassium channels (KCa channels) or any other type of ion channel in smooth muscle. We provide here the first direct evidence that cGMP-PK can activate KCa channels in arterial smooth muscle cells. We demonstrate that NO and a membrane-permeable analogue of cGMP can activate KCa channels in on-cell patches approximately twofold. Furthermore, cGMP-PK, in the presence of ATP and cGMP added directly to the intracellular surface of inside-out patches, increases channel activity by approximately eightfold. These results suggest that cGMP-PK-mediated activation of KCa channels may contribute to the actions of NO and other nitrovasodilators.
منابع مشابه
Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase.
Nitric oxide (NO)-induced relaxation is associated with increased levels of cGMP in vascular smooth muscle cells. However, the mechanism by which cGMP causes relaxation is unknown. This study tested the hypothesis that activation of Ca-sensitive K (KCa) channels, mediated by a cGMP-dependent protein kinase, is responsible for the relaxation occurring in response to cGMP. In rat pulmonary artery...
متن کاملDifferential regulation of Ca(2+) sparks and Ca(2+) waves by UTP in rat cerebral artery smooth muscle cells.
Uridine 5'-triphosphate (UTP), a potent vasoconstrictor that activates phospholipase C, shifted Ca(2+) signaling from sparks to waves in the smooth muscle cells of rat cerebral arteries. UTP decreased the frequency of Ca(2+) sparks and transient Ca(2+)-activated K(+) (K(Ca)) currents and increased the frequency of Ca(2+) waves. The UTP-induced reduction in Ca(2+) spark frequency did not reflect...
متن کاملcAMP-dependent vasodilators cross-activate the cGMP-dependent protein kinase to stimulate BK(Ca) channel activity in coronary artery smooth muscle cells.
cAMP-dependent vasodilators are used to treat a variety of cardiovascular disorders; however, the signal transduction pathways and effector mechanisms stimulated by these agents are not fully understood. In the present study we demonstrate that cAMP-stimulating agents enhance the activity of the large-conductance, calcium-activated potassium (BK(Ca)) channel in single myocytes from coronary art...
متن کاملPleiotropic regulation of vascular smooth muscle tone by cyclic GMP-dependent protein kinase.
Cyclic GMP (cGMP) mediates vascular smooth muscle relaxation in response to nitric oxide and atrial natriuretic peptides. One mechanism by which cGMP decreases vascular tone is by lowering cytosolic Ca2+ levels in smooth muscle cells. Although mechanisms by which cGMP regulates cytosolic Ca2+ are unclear, an important role for the cGMP-dependent dependent protein kinase in regulating Ca2+ has b...
متن کاملChronic nicotine alters NO signaling of Ca(2+) channels in cerebral arterioles.
Smoking is a major health hazard with proven deleterious effects on the cerebral circulation, including a decrease in cerebral blood flow and a high risk for stroke. To elucidate cellular mechanisms for the vasoconstrictive and pathological effects of nicotine, we used a nystatin-perforated patch-clamp technique to study Ca(2+) channels and Ca(2+)-activated K(+) (BK) channels in smooth muscle c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 265 1 Pt 1 شماره
صفحات -
تاریخ انتشار 1993